期刊文献+

利用经验模态分解方法消除白噪声及谐波 被引量:4

The Application of Empirical Modal Decomposition in Eliminating White Noise and Harmonics
下载PDF
导出
摘要 在电力信号的分析中引入经验模态分解方法,可以将电力信号中的白噪声及谐波滤除。首先对信号进行经验模态分解,利用白噪声分解后固有模态函数(IMF)的统计特性将白噪声滤除,然后将剩余的固有模态函数予以重新组合,并再次对新信号进行经验模态分解。由于没有噪声的影响,谐波和基波分量分解在不同的固有模态函数上,最低频的固有模态函数即是要提取的基波分量,谐波分量被消除。实验仿真结果证明了该方法的有效性和正确性。 Empirical Modal Decomposition(EMD) method is introduced to analyze power signal,which can eliminates the white noise and harmonics in the power signal.Firstly,power signal is dealt with by using of EMD,and the white noise is filtered according to statistical characteristics of Intrinsic Modal Function(IMF) after decomposing.Then the remanent IMF can recombined,and new signal will be decomposed by empirical modal.Without the influence of the white noise,the harmonic and fundamental components of the new reset signal can be decomposed in different IMF by EMD,and the IMF of lowest frequency is the required fundamental component,then the harmonics in the power signal can be eliminated.The result of experiment verifies the validity and correctness of the proposed method.
作者 潘章达 张铖
出处 《现代电力》 2010年第5期53-56,共4页 Modern Electric Power
关键词 经验模态分解 电力信号 白噪声 固有模态函数 谐波 基波 Empirical Modal Decomposition power signal white noise Intrinsic Modal Function harmonics fundamental wave
  • 相关文献

参考文献8

  • 1蔡吩.电能质量技术丛书--电力系统频率[M].北京:中国电力出版社,1998. 被引量:1
  • 2Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis [C]. Proceedings: Mathematical, Physical and Engineering Sciences, 1998, 454(1971) : 903- 995. 被引量:1
  • 3Flandrin G, Rilling G, Goncal V P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2):112- 114. 被引量:1
  • 4谭善文,秦树人,汤宝平.Hilbert-Huang变换的滤波特性及其应用[J].重庆大学学报(自然科学版),2004,27(2):9-12. 被引量:105
  • 5Huang N E. Review of empirical mode decomposition [C]. Proceddings of SPIE, 2001, 3:71 -80. 被引量:1
  • 6Gabriel Rilling, Patrick Flandrin, Paulo Goncalves. On emipirical mode decomposition and its algorithms [C].IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing. 2003. 被引量:1
  • 7Wu Z, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition [C]. Proceedings of the Royal Society of London, 2004, 460: 1597-1611. 被引量:1
  • 8钱勇,黄成军,陈陈,江秀臣.基于经验模态分解的局部放电去噪方法[J].电力系统自动化,2005,29(12):53-56. 被引量:36

二级参考文献13

  • 1徐剑,黄成军,金浩,邵震宇.基于小波集合的局部放电信息提取算法[J].电力系统自动化,2004,28(16):36-40. 被引量:15
  • 2张贤达 保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1999.228-258. 被引量:50
  • 3HUANG N E, ZHENG S, STEVEN R L et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proceedings of the Royal Society A, 1998, (454): 903-995. 被引量:1
  • 4ZHANG R R, VANDEMARK L, LIANG J et al. On Estimating Site Damping with Soil Non-linearity from Earthquake Recordings. International Journal of Non-linear Mechanics, 2004, 39(9): 1501-1517. 被引量:1
  • 5PAN J, YAN X H, ZHENG Q et al. Interpretation of Scatterometer Ocean Surface Wind Vector EOFs over the Northwestern Pacific. Remote Sensing of Environment, 2003,84(1) : 53-68. 被引量:1
  • 6HUANG N E, WU M L, QU W D et al. Applications of Hilbert-Huang Transform to Non-stationary Financial Time Series Analysis. Applied Stochastic Models in Business and Industry, 2003, 19(3): 245-268. 被引量:1
  • 7HUANG N E. Review of Empirical Mode Decomposition. In:Proceedings of SPIE, 2001, 4391:71-80. Vol 3. Orlando:2001. 被引量:1
  • 8DOWNIE T R, SILVERMAN B W. The Discrete Multiple Wavelet Transform and Thresholding Methods. IEEE Trans on Signal Processing, 1998, 46(9): 2558-2561. 被引量:1
  • 9WU Z, HUANG N E. A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method.Proceedings of the Royal Society A, 2004, (460) : 1597-1611. 被引量:1
  • 10SATISH L, NAZNEEN B. Wavelet-based Denoising of Partial Discharge Signals Buried in Excessive Noise and Interference.IEEE Trans on Dielectrics and Electrical Insulation, 2003,10(2) : 354-367. 被引量:1

共引文献139

同被引文献31

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部