High order accurate weighted essentially non-oscillatory (WENO) schemes have been used extensively in numerical solutions of hyperbolic partial differential equations and other convection dominated problems. However...High order accurate weighted essentially non-oscillatory (WENO) schemes have been used extensively in numerical solutions of hyperbolic partial differential equations and other convection dominated problems. However the WENO procedure can not be applied directly to obtain a stable scheme when negative linear weights are present. In this paper, we first briefly review the WENO framework and the role of linear weights, and then present a detailed study on the positivity of linear weights in a few typical WENO procedures, including WENO interpolation, WENO reconstruction and WENO approximation to first and second derivatives, and WENO integration. Explicit formulae for the linear weights are also given for these WENO procedures. The results of this paper should be useful for future design of WENO schemes involving interpolation, reconstruction, approximation to first and second derivatives, and integration procedures.展开更多
By using fluid dynamics theory with the effects of adsorption and reaction, the chromatography model with a reaction A →B was established as a system of two hyperbolic partial differential equations (PDE’s)....By using fluid dynamics theory with the effects of adsorption and reaction, the chromatography model with a reaction A →B was established as a system of two hyperbolic partial differential equations (PDE’s). In some practical situations, the reaction chromatography model was simplified a semi-coupled system of two linear hyperbolic PDE’s. In which, the reactant concentration wave model was the initial-boundary value problem of a self-closed hyperbolic PDE, while the resultant concentration wave model was the initial-boundary value problem of hyperbolic PDE coupling reactant concentration. The general explicit expressions for the concentration wave of the reactants and resultants were derived by Laplace transform. The δ-pulse and wide pulse injections were taken as the examples to discuss detailedly, and then the stability analysis between the resultant solutions of the two modes of pulse injection was further discussed. It was significant for further analysis of chromatography, optimizing chromatographic separation, determining the physical and chemical characters.展开更多
In petroleum engineering, the transport phenomenon of proppants in a fracture caused by hydraulic fracturing is captured by hyperbolic partial differential equations(PDEs). The solution of this kind of PDEs may encoun...In petroleum engineering, the transport phenomenon of proppants in a fracture caused by hydraulic fracturing is captured by hyperbolic partial differential equations(PDEs). The solution of this kind of PDEs may encounter smooth transitions, or there can be large gradients of the field variables. The numerical challenge posed in a shock situation is that high-order finite difference schemes lead to significant oscillations in the vicinity of shocks despite that such schemes result in higher accuracy in smooth regions. On the other hand, first-order methods provide monotonic solution convergences near the shocks,while giving poorer accuracy in the smooth regions.Accurate numerical simulation of such systems is a challenging task using conventional numerical methods. In this paper, we investigate several shock-capturing schemes.The competency of each scheme was tested against onedimensional benchmark problems as well as published numerical experiments. The numerical results have shown good performance of high-resolution finite volume methods in capturing shocks by resolving discontinuities while maintaining accuracy in the smooth regions. Thesemethods along with Godunov splitting are applied to model proppant transport in fractures. It is concluded that the proposed scheme produces non-oscillatory and accurate results in obtaining a solution for proppant transport problems.展开更多
The aim of this study is to give a Legendre polynomial approximation for the solution of the second order linear hyper-bolic partial differential equations (HPDEs) with two variables and constant coefficients. For thi...The aim of this study is to give a Legendre polynomial approximation for the solution of the second order linear hyper-bolic partial differential equations (HPDEs) with two variables and constant coefficients. For this purpose, Legendre matrix method for the approximate solution of the considered HPDEs with specified associated conditions in terms of Legendre polynomials at any point is introduced. The method is based on taking truncated Legendre series of the functions in the equation and then substituting their matrix forms into the given equation. Thereby the basic equation reduces to a matrix equation, which corresponds to a system of linear algebraic equations with unknown Legendre coefficients. The result matrix equation can be solved and the unknown Legendre coefficients can be found approximately. Moreover, the approximated solutions of the proposed method are compared with the Taylor [1] and Bernoulli [2] matrix methods. All of computations are performed on a PC using several programs written in MATLAB 7.12.0.展开更多
研究了一类具非线性扩散系数和阻尼项的双曲型偏微分方程系统2ui(x,t)/t2+m(t)ui(x,t)/t=ai(t)hi(ui)Δui+sum from j=1 to n aij(t)hij(ui(x,t-τj(t)))Δui(x,t-τj(t))-sum from k=1 to m bik(x,t)uk(x,t-σ(t))(x,t)∈Ω...研究了一类具非线性扩散系数和阻尼项的双曲型偏微分方程系统2ui(x,t)/t2+m(t)ui(x,t)/t=ai(t)hi(ui)Δui+sum from j=1 to n aij(t)hij(ui(x,t-τj(t)))Δui(x,t-τj(t))-sum from k=1 to m bik(x,t)uk(x,t-σ(t))(x,t)∈Ω×R+≡G,i=1,2,…m,获得了该方程组在Robin边值条件下解振动的充分条件。展开更多
In this paper, we consider a bound on a general version of the integralinequalities for functions and also study the qualitative behavior of the solutions of certainclasses of the hyperbolic partial delay differential...In this paper, we consider a bound on a general version of the integralinequalities for functions and also study the qualitative behavior of the solutions of certainclasses of the hyperbolic partial delay differential equations under the integral inequalities.展开更多
For a family of linear hyperbolic damped stochastic wave equations with rapidly oscillating coefficients, we establish the homogenization result by using the sigma-convergence method. This is achieved under an abstrac...For a family of linear hyperbolic damped stochastic wave equations with rapidly oscillating coefficients, we establish the homogenization result by using the sigma-convergence method. This is achieved under an abstract assumption covering special cases like the periodicity, the almost periodicity and some others.展开更多
基金Supported by the National Natural Science Foundation of China(No.10671190)Natural Science Foundationgrant DMS-0809086 and ARO grant W911NF-08-1-0520
文摘High order accurate weighted essentially non-oscillatory (WENO) schemes have been used extensively in numerical solutions of hyperbolic partial differential equations and other convection dominated problems. However the WENO procedure can not be applied directly to obtain a stable scheme when negative linear weights are present. In this paper, we first briefly review the WENO framework and the role of linear weights, and then present a detailed study on the positivity of linear weights in a few typical WENO procedures, including WENO interpolation, WENO reconstruction and WENO approximation to first and second derivatives, and WENO integration. Explicit formulae for the linear weights are also given for these WENO procedures. The results of this paper should be useful for future design of WENO schemes involving interpolation, reconstruction, approximation to first and second derivatives, and integration procedures.
文摘By using fluid dynamics theory with the effects of adsorption and reaction, the chromatography model with a reaction A →B was established as a system of two hyperbolic partial differential equations (PDE’s). In some practical situations, the reaction chromatography model was simplified a semi-coupled system of two linear hyperbolic PDE’s. In which, the reactant concentration wave model was the initial-boundary value problem of a self-closed hyperbolic PDE, while the resultant concentration wave model was the initial-boundary value problem of hyperbolic PDE coupling reactant concentration. The general explicit expressions for the concentration wave of the reactants and resultants were derived by Laplace transform. The δ-pulse and wide pulse injections were taken as the examples to discuss detailedly, and then the stability analysis between the resultant solutions of the two modes of pulse injection was further discussed. It was significant for further analysis of chromatography, optimizing chromatographic separation, determining the physical and chemical characters.
基金the research funding for this study provided by NSERC through CRDPJ 387606-09
文摘In petroleum engineering, the transport phenomenon of proppants in a fracture caused by hydraulic fracturing is captured by hyperbolic partial differential equations(PDEs). The solution of this kind of PDEs may encounter smooth transitions, or there can be large gradients of the field variables. The numerical challenge posed in a shock situation is that high-order finite difference schemes lead to significant oscillations in the vicinity of shocks despite that such schemes result in higher accuracy in smooth regions. On the other hand, first-order methods provide monotonic solution convergences near the shocks,while giving poorer accuracy in the smooth regions.Accurate numerical simulation of such systems is a challenging task using conventional numerical methods. In this paper, we investigate several shock-capturing schemes.The competency of each scheme was tested against onedimensional benchmark problems as well as published numerical experiments. The numerical results have shown good performance of high-resolution finite volume methods in capturing shocks by resolving discontinuities while maintaining accuracy in the smooth regions. Thesemethods along with Godunov splitting are applied to model proppant transport in fractures. It is concluded that the proposed scheme produces non-oscillatory and accurate results in obtaining a solution for proppant transport problems.
文摘The aim of this study is to give a Legendre polynomial approximation for the solution of the second order linear hyper-bolic partial differential equations (HPDEs) with two variables and constant coefficients. For this purpose, Legendre matrix method for the approximate solution of the considered HPDEs with specified associated conditions in terms of Legendre polynomials at any point is introduced. The method is based on taking truncated Legendre series of the functions in the equation and then substituting their matrix forms into the given equation. Thereby the basic equation reduces to a matrix equation, which corresponds to a system of linear algebraic equations with unknown Legendre coefficients. The result matrix equation can be solved and the unknown Legendre coefficients can be found approximately. Moreover, the approximated solutions of the proposed method are compared with the Taylor [1] and Bernoulli [2] matrix methods. All of computations are performed on a PC using several programs written in MATLAB 7.12.0.
文摘研究了一类具非线性扩散系数和阻尼项的双曲型偏微分方程系统2ui(x,t)/t2+m(t)ui(x,t)/t=ai(t)hi(ui)Δui+sum from j=1 to n aij(t)hij(ui(x,t-τj(t)))Δui(x,t-τj(t))-sum from k=1 to m bik(x,t)uk(x,t-σ(t))(x,t)∈Ω×R+≡G,i=1,2,…m,获得了该方程组在Robin边值条件下解振动的充分条件。
文摘In this paper, we consider a bound on a general version of the integralinequalities for functions and also study the qualitative behavior of the solutions of certainclasses of the hyperbolic partial delay differential equations under the integral inequalities.
基金the support of the CETIC(African Center of Excellence in Information and Communication Technologies)the support of the Humboldt Foundation
文摘For a family of linear hyperbolic damped stochastic wave equations with rapidly oscillating coefficients, we establish the homogenization result by using the sigma-convergence method. This is achieved under an abstract assumption covering special cases like the periodicity, the almost periodicity and some others.