摘要
研究了一类具有连续分布时滞变量的非线性双曲型偏微分方程组解的振动性.获得了该方程组在Robin边值条件和Dircichlet边值条件下解振动的充分条件.
This paper studies oscillation of systems of nonlinear hyperbolic partial differential equations with continuous deviating arguments. Sufficient conditions for each solution to be oscillation are obtained under Robin and Dircich.let boundary value conditions.
出处
《应用数学》
CSCD
北大核心
2007年第4期706-710,共5页
Mathematica Applicata
基金
湖南省自然科学基金资助项目(05JJ40008)
关键词
双曲型偏微分方程
连续时滞变量
振动性
Oscillation
Systems of hyperbolic partial differential equations
Continuousdeviating arguments
Nonlinear