期刊文献+

非线性二阶时滞微分不等式的性质及其应用 被引量:4

The Properties of Solutions of Nonlinear Second Order Delay Differential Inequalities and Its Applications
下载PDF
导出
摘要 本文研究一类非线性二阶时滞微分不等式解的性质。应用这些性质,建立了一类含时滞的双曲偏微分方程边值问题解的若干新的振动准则。 In this paper we give the properties of solutions for a class nonlinear second order differential inequalities with delay arguments. As applications, we establish some new criteria for the oscillation of solutions of certain delay hyperbolic boundary value problems.
出处 《应用数学与计算数学学报》 1996年第1期41-47,共7页 Communication on Applied Mathematics and Computation
关键词 微分不等式 振动 双曲型方程 非线性 边值问题 differential inequalities, hyperbolic partial differential equations, oscillatory.
  • 相关文献

同被引文献26

  • 1俞元洪,温香彩.由强迫函数诱导的高阶泛函微分不等式的有界振动[J].河南师范大学学报(自然科学版),1996,24(2):1-4. 被引量:2
  • 2Ladas G. Sharp Conditions Caused by Delays[J]. Appl Anal ,1979 ,9 (2) :95 -98. 被引量:1
  • 3Ladas G, Stavroulakis I P. On Delay Differential Inequalities of First Order[ J ]. Funkcial Ekvac , 1982 ,25 (1) :105 -113. 被引量:1
  • 4Ladas G, Stavroulakis I P. Oscillations Caused by Several Retarded and Advanced Argument [ J ]. J Diff Eqs, 1982 (44) :134 - 152. 被引量:1
  • 5Jiong Ruan. A class of diffremtial inequalities with continuous distributed deviating argruments [ J ]. Acta Math Sinica, 1987,30: 661 - 670(in Chinese). 被引量:1
  • 6阮炯.一阶偏差变元微分不等式的解的性质及应用.科学通报,1984,29(20):1225-1227. 被引量:3
  • 7魏俊杰.关于线性偏差变元微分方程解的振动性准则.数学的实践与认识,1988,(3):9-19. 被引量:3
  • 8Ye H P, Gao J M. Henry-Gronwall type retarded integral inequalities and their applications to fractional differential equations with delay [J]. Appl Math Comput, 2011, 218(8): 4125-4160. 被引量:1
  • 9Lin S Y. Generalized Gronwall inequalities and their applications to fractional differential equations [J]. Journal of Inequalities and Applications, 2013, 2013(549): 1-9. 被引量:1
  • 10Abdeldaim A, Yakout M. On some new integral inequalities of Gronwall-Bellman-Pachpatte type [J]. Appl Math Comput, 2011, 217(20): 7887-7899. 被引量:1

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部