期刊文献+

q-Gronwall不等式及其在分数阶q-微分方程的应用 被引量:1

q-Gronwall inequality and its application to fractional q-differential equations
下载PDF
导出
摘要 利用q-微积分的性质,得到时间测度q上的Gronwall不等式;并利用该推广的不等式分别讨论带有Riemann-Liouville和Caputo分数阶导数的q-微分方程的解对分数阶导数的阶数和初值的依赖性. In this paper, we present a generalized q-Gronwall inequality. By using this inequality, the dependence of the solutions for the Riemann-Liouville and the Caputo fractional q-differential equations on the order and the initial conditions are discussed.
作者 李晓艳 蒋威
出处 《应用数学与计算数学学报》 2015年第2期136-145,共10页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11371027) 安徽大学博士启动资助项目(023033190249)
关键词 q-Gronwall不等式 分数阶q-导数 分数阶q-积分 分数阶q-微分方程 q-Gronwall inequality fractional q-derivatives fractional q-integral fractional q-differential equations
  • 相关文献

参考文献18

  • 1Ye H P, Gao J M. Henry-Gronwall type retarded integral inequalities and their applications to fractional differential equations with delay [J]. Appl Math Comput, 2011, 218(8): 4125-4160. 被引量:1
  • 2Lin S Y. Generalized Gronwall inequalities and their applications to fractional differential equations [J]. Journal of Inequalities and Applications, 2013, 2013(549): 1-9. 被引量:1
  • 3张立琴,张玉芬.非线性二阶时滞微分不等式的性质及其应用[J].应用数学与计算数学学报,1996,10(1):41-47. 被引量:4
  • 4Abdeldaim A, Yakout M. On some new integral inequalities of Gronwall-Bellman-Pachpatte type [J]. Appl Math Comput, 2011, 217(20): 7887-7899. 被引量:1
  • 5Feng Q H, Zheng B. Generalized Gronwall-Bellman-type delay dynamic inequalities on time scales and their applications [J]. Appl Math Comput, 2012, 218(15): 7880-7892. 被引量:1
  • 6Lipovan O. A retard Gronwall-like inequality and its applications [J]. J Math Anal Appl, 2000, 252(1): 389-402. 被引量:1
  • 7Agrawal R P, Deng S, Zhang W R. Generalization of a retard Gronwall-like inequality and its applications [J]. Appl Math Comput, 2005, 27(3): 599-612. 被引量:1
  • 8Corduneanu C. Principles of Differential and Integral Equations [M]. Boston: Allyn and Bacon, 1971. 被引量:1
  • 9Podlubny I. Fractional Differential Equations [M]. San Diego: Academic Press, 1999. 被引量:1
  • 10Kac V, Cheung P. Quantum Calculus [M]. New York: Springer-Verlag, 2002. 被引量:1

共引文献3

同被引文献13

引证文献1

  • 1段俊生,寇春海,李常品.前言[J].应用数学与计算数学学报,2015,29(2).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部