In this article, we prove the existence and obtain the expression of its solution formula of global smooth solution for non-homogeneous multi-dimensional(m-D) conservation law with unbounded initial value; our metho...In this article, we prove the existence and obtain the expression of its solution formula of global smooth solution for non-homogeneous multi-dimensional(m-D) conservation law with unbounded initial value; our methods are new and essentially different with the situation of bounded initial value.展开更多
In the paper, we will discuss the Kadomtsev-Petviashvili Equation which is used to model shallow-water waves with weakly non-linear restoring forces and is also used to model waves in ferromagnetic media by employing ...In the paper, we will discuss the Kadomtsev-Petviashvili Equation which is used to model shallow-water waves with weakly non-linear restoring forces and is also used to model waves in ferromagnetic media by employing the method of variable separation. Abundant exact solutions including global smooth solutions and local blow up solutions are obtained. These solutions would contribute to studying the behavior and blow up properties of the solution of the Kadomtsev-Petviashvili Equation.展开更多
We obtain the global smooth solution of a nonlinear SchrSdinger equations in atomic Bose-Einstein condensates with two-dimensional spaces. By using the Galerkin method and a priori estimates, we establish the global e...We obtain the global smooth solution of a nonlinear SchrSdinger equations in atomic Bose-Einstein condensates with two-dimensional spaces. By using the Galerkin method and a priori estimates, we establish the global existence and uniqueness of the smooth solution.展开更多
In this paper,we study the global smooth solutions of the Cauchy problem for two important nonstrictly quasilinear hyperbolic systems.i.e.,the isentropic gas dynamics system in Euler coordinates (Ⅰ) and the rotationa...In this paper,we study the global smooth solutions of the Cauchy problem for two important nonstrictly quasilinear hyperbolic systems.i.e.,the isentropic gas dynamics system in Euler coordinates (Ⅰ) and the rotational degeneracy of hyperbolic systems of conservation laws(Ⅱ).sufficient conditions which guarantee the existence of gloats smooth solutions of the Cauchy problems (Ⅰ) and (Ⅱ) are obtained by employing the characteristic method.展开更多
This paper is concerned with an Initial Boundary Value Problem (IBVP) for a strongly coupled semilinear reaction-diffusion system. By using the upper and lower solutions method and Leray-Schauder fixed point theorem a...This paper is concerned with an Initial Boundary Value Problem (IBVP) for a strongly coupled semilinear reaction-diffusion system. By using the upper and lower solutions method and Leray-Schauder fixed point theorem and so on, the authors prove the global existence and uniqueness of a. smooth. solution for this IBVP under some appropriate conditions.展开更多
基金partly supported by Natural Science Foundation of China(11471332 and 11071246)
文摘In this article, we prove the existence and obtain the expression of its solution formula of global smooth solution for non-homogeneous multi-dimensional(m-D) conservation law with unbounded initial value; our methods are new and essentially different with the situation of bounded initial value.
文摘In the paper, we will discuss the Kadomtsev-Petviashvili Equation which is used to model shallow-water waves with weakly non-linear restoring forces and is also used to model waves in ferromagnetic media by employing the method of variable separation. Abundant exact solutions including global smooth solutions and local blow up solutions are obtained. These solutions would contribute to studying the behavior and blow up properties of the solution of the Kadomtsev-Petviashvili Equation.
基金Acknowledgements This work was supported in part by the National Natural Science Foundation of China (Grant No. 11571254).
文摘We obtain the global smooth solution of a nonlinear SchrSdinger equations in atomic Bose-Einstein condensates with two-dimensional spaces. By using the Galerkin method and a priori estimates, we establish the global existence and uniqueness of the smooth solution.
文摘In this paper,we study the global smooth solutions of the Cauchy problem for two important nonstrictly quasilinear hyperbolic systems.i.e.,the isentropic gas dynamics system in Euler coordinates (Ⅰ) and the rotational degeneracy of hyperbolic systems of conservation laws(Ⅱ).sufficient conditions which guarantee the existence of gloats smooth solutions of the Cauchy problems (Ⅰ) and (Ⅱ) are obtained by employing the characteristic method.
文摘This paper is concerned with an Initial Boundary Value Problem (IBVP) for a strongly coupled semilinear reaction-diffusion system. By using the upper and lower solutions method and Leray-Schauder fixed point theorem and so on, the authors prove the global existence and uniqueness of a. smooth. solution for this IBVP under some appropriate conditions.