The spatial distribution of beams with orbital angular momentum in the far field is known to be extremely sensitive to angular aberrations,such as astigmatism,coma and trefoil.This poses a challenge for conventional b...The spatial distribution of beams with orbital angular momentum in the far field is known to be extremely sensitive to angular aberrations,such as astigmatism,coma and trefoil.This poses a challenge for conventional beam optimization strategies when a homogeneous ring intensity is required for an application.We developed a novel approach for estimating the Zernike coefficients of low-order angular aberrations in the near field based solely on the analysis of the ring deformations in the far field.A fast,iterative reconstruction of the focal ring recreates the deformations and provides insight into the wavefront deformations in the near field without relying on conventional phase retrieval approaches.The output of our algorithm can be used to optimize the focal ring,as demonstrated experimentally at the 100 TW beamline at the Extreme Light Infrastructure-Nuclear Physics facility.展开更多
One method of cancer therapy is to utilize nano-antenna for thermal ablation.In this method,the electromagnetic waves emitted from the nano-antenna are absorbed by the tissue and lead to heating of cancer cells.If tem...One method of cancer therapy is to utilize nano-antenna for thermal ablation.In this method,the electromagnetic waves emitted from the nano-antenna are absorbed by the tissue and lead to heating of cancer cells.If temperature of cancer cells reaches a threshold,they will begin to die.For this purpose,an L-shaped frame nano-antenna(LSFNA) is designed to introduce into the biological tissue.Thus,the radiation characteristics of the LSFNA such as near and far-field intensities,directivity,and sensitivity to its gap width are studied to the optimization of the nano-antenna.The bio-heat and Maxwell equations are solved using the finite element method.To prevent damage to healthy tissues in this method,the antenna radiation must be completely controlled and performed carefully.Thus,penetration depth,special absorption rate,temperature distribution,and the fraction of tissue necrosis are analyzed in the biological tissue.That is why the design and optimization of the nano-antennas as a radiation source is important.Also,a pulsed source is used to excite the LSFNA.Furthermore,focusing and efficiency of the nano-antenna radiation on the cancer cell is tuned using an adjustable liquid crystal lens.The focus of this lens is changing under an electric field applied to its surrounding cathode.展开更多
基金funded through IOSIN,Nucleu PN-IFIN-HH 23-26 Code PN 2321Extreme Light Infrastructure-Nuclear Physics(ELI-NP)Phase II+2 种基金a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund and the Competitiveness Operational Programme(1/07.07.2016,COP,ID 1334)through IFA project ELI-RO 03/2020 Pulse-Mereadreceived funding from the European Union’s HORIZON-INFRA-2022-TECH-01 call under grant agreement number 101095207
文摘The spatial distribution of beams with orbital angular momentum in the far field is known to be extremely sensitive to angular aberrations,such as astigmatism,coma and trefoil.This poses a challenge for conventional beam optimization strategies when a homogeneous ring intensity is required for an application.We developed a novel approach for estimating the Zernike coefficients of low-order angular aberrations in the near field based solely on the analysis of the ring deformations in the far field.A fast,iterative reconstruction of the focal ring recreates the deformations and provides insight into the wavefront deformations in the near field without relying on conventional phase retrieval approaches.The output of our algorithm can be used to optimize the focal ring,as demonstrated experimentally at the 100 TW beamline at the Extreme Light Infrastructure-Nuclear Physics facility.
文摘One method of cancer therapy is to utilize nano-antenna for thermal ablation.In this method,the electromagnetic waves emitted from the nano-antenna are absorbed by the tissue and lead to heating of cancer cells.If temperature of cancer cells reaches a threshold,they will begin to die.For this purpose,an L-shaped frame nano-antenna(LSFNA) is designed to introduce into the biological tissue.Thus,the radiation characteristics of the LSFNA such as near and far-field intensities,directivity,and sensitivity to its gap width are studied to the optimization of the nano-antenna.The bio-heat and Maxwell equations are solved using the finite element method.To prevent damage to healthy tissues in this method,the antenna radiation must be completely controlled and performed carefully.Thus,penetration depth,special absorption rate,temperature distribution,and the fraction of tissue necrosis are analyzed in the biological tissue.That is why the design and optimization of the nano-antennas as a radiation source is important.Also,a pulsed source is used to excite the LSFNA.Furthermore,focusing and efficiency of the nano-antenna radiation on the cancer cell is tuned using an adjustable liquid crystal lens.The focus of this lens is changing under an electric field applied to its surrounding cathode.