This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on th...This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.展开更多
An interval algorlthm for inequality coustrained discrete minimax problems is described, in which the constrained and objective functions are C1 functions. First, based on the penalty function methods, we trans form t...An interval algorlthm for inequality coustrained discrete minimax problems is described, in which the constrained and objective functions are C1 functions. First, based on the penalty function methods, we trans form this problem to unconstrained optimization. Second, the interval extensions of the penalty functions and the test rules of region deletion are discussed. At last, we design an interval algorithm with the bisection rule of Moore. The algorithm provides bounds on both the minimax value and the localization of the minimax points of the problem. Numerical results show that algorithm is reliable and efficiency.展开更多
P-集合(packet-sets)具有动态特性,它是由内P-集合XF-(internal packet set XF-)与外P-集合XF(outer packet set XF)构成的集合对(X-F,XF)。利用P-集合,给出-F-数据离散区间、F-数据离散区间的概念;利用这些概念,给出信息系统输出数据...P-集合(packet-sets)具有动态特性,它是由内P-集合XF-(internal packet set XF-)与外P-集合XF(outer packet set XF)构成的集合对(X-F,XF)。利用P-集合,给出-F-数据离散区间、F-数据离散区间的概念;利用这些概念,给出信息系统输出数据的数据离散区间特征,给出数据过滤概念;提出数据离散区间定理、数据还原定理、数据过滤定理、数据过滤剩余与数据辨识定理,给出应用。P-集合是研究信息系统输出数据变化的一个新理论与新方法。展开更多
In this paper,a class of unconstrained discrete minimax problems is described,in which the objective functions are in C 1.The paper deals with this problem by means of taking the place of maximum entropy function...In this paper,a class of unconstrained discrete minimax problems is described,in which the objective functions are in C 1.The paper deals with this problem by means of taking the place of maximum entropy function with adjustable entropy function.By constructing an interval extension of adjustable entropy function an d some region deletion test rules,a new interval algorithm is presented.The rele vant properties are proven.The minimax value and the localization of the minimax points of the problem can be obtained by this method. This method can overcome the flow problem in the maximum entropy algorithm.Both theoretical and numerica l results show that the method is reliable and efficient.展开更多
基金supported by the National Natural Science Foundation of China(7090104171171113)the Aeronautical Science Foundation of China(2014ZG52077)
文摘This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.
文摘An interval algorlthm for inequality coustrained discrete minimax problems is described, in which the constrained and objective functions are C1 functions. First, based on the penalty function methods, we trans form this problem to unconstrained optimization. Second, the interval extensions of the penalty functions and the test rules of region deletion are discussed. At last, we design an interval algorithm with the bisection rule of Moore. The algorithm provides bounds on both the minimax value and the localization of the minimax points of the problem. Numerical results show that algorithm is reliable and efficiency.
文摘P-集合(packet-sets)具有动态特性,它是由内P-集合XF-(internal packet set XF-)与外P-集合XF(outer packet set XF)构成的集合对(X-F,XF)。利用P-集合,给出-F-数据离散区间、F-数据离散区间的概念;利用这些概念,给出信息系统输出数据的数据离散区间特征,给出数据过滤概念;提出数据离散区间定理、数据还原定理、数据过滤定理、数据过滤剩余与数据辨识定理,给出应用。P-集合是研究信息系统输出数据变化的一个新理论与新方法。
基金Supported by the National Natural Science Foundation of China(50 1 740 51 )
文摘In this paper,a class of unconstrained discrete minimax problems is described,in which the objective functions are in C 1.The paper deals with this problem by means of taking the place of maximum entropy function with adjustable entropy function.By constructing an interval extension of adjustable entropy function an d some region deletion test rules,a new interval algorithm is presented.The rele vant properties are proven.The minimax value and the localization of the minimax points of the problem can be obtained by this method. This method can overcome the flow problem in the maximum entropy algorithm.Both theoretical and numerica l results show that the method is reliable and efficient.