期刊文献+

基于离散区间的频繁嵌入式子树挖掘算法

Frequent embedded subtree mining algorithm based on discrete interval
下载PDF
导出
摘要 针对频繁嵌入式子树挖掘,利用离散区间来构造投影库,给出一种基于离散区间的频繁嵌入式子树挖掘算法。该算法通过离散区间消除冗余投影,有效地压缩投影库的规模,提高了子树节点计数效率,减低了算法的时空复杂性。实验结果表明该算法具有较高的挖掘效率。 A frequent embedded subtree mining algorithm based on discrete interval, called DIFTM algorithm, was presented by using discrete interval to construct project database. The algorithm eliminates effectively redundant projection in the process of constructing project database by computing discrete interval so that the size of the project database was reduced, searching and counting efficiency of the subtree nodes was improved, and its time-space complexity was reduced. The experimental results show that the DIFI?M algorithm is efficient and effective.
出处 《计算机应用》 CSCD 北大核心 2009年第4期1120-1123,共4页 journal of Computer Applications
基金 山西省自然科学基金资助项目(2006011041)
关键词 数据挖掘 频繁嵌入式子树 离散区间 投影库 冗余投影 data mining frequent embedded subtree discrete interval project database redundant projection
  • 相关文献

参考文献8

  • 1ZAKI M J. Efficiently mining frequent trees in a forest[ C]// Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2002:71 -80. 被引量:1
  • 2ASAI T, ABE K, KAWASOE S, et al. Efficient substructure discovery from large semi-structured data[ J]. IEICE Transactions on Information and Systems, 2004, E87-D(12) : 2754 -2763. 被引量:1
  • 3潘瑾 严勇 王晨 等.Chopper:一个高效的有序标号树频繁结构的挖掘算法.计算机科学,2003,30(10):303-308. 被引量:1
  • 4朱永泰,王晨,洪铭胜,汪卫,施伯乐.ESPM——频繁子树挖掘算法[J].计算机研究与发展,2004,41(10):1720-1727. 被引量:18
  • 5杨沛,郑启伦,彭宏,李颖基.PFTM:一种基于投影的频繁子树挖掘算法[J].计算机科学,2005,32(2):206-209. 被引量:5
  • 6赵传申,孙志挥,张净.基于投影分支的快速频繁子树挖掘算法[J].计算机研究与发展,2006,43(3):456-462. 被引量:14
  • 7王晨..结构数据挖掘与处理的若干问题的研究[D].复旦大学,2005:
  • 8ZAKI M J. Data mining template library[ EB/OL]. [ 2008 - 08 - 11 ]. http://www, cs. rpi. edu/- zaki/software/. 被引量:1

二级参考文献43

  • 1朱永泰,王晨,洪铭胜,汪卫,施伯乐.ESPM——频繁子树挖掘算法[J].计算机研究与发展,2004,41(10):1720-1727. 被引量:18
  • 2Cook D, Holder L. Substructure discovery using minimal description length and background knowledge. Journal of Arti_cial Intelligence Research, 1994,1: 231~ 255. 被引量:1
  • 3Yoshida K, Motoda H. CLIP: Concept learning from inference patterns. Artificial Intelligence, 1995,75 (1):63~ 92. 被引量:1
  • 4Asai T,Abe K,Kawasoe S,Arimura H,Satamoto H,Arikawa S.Effecient substructure discovery from large semi-structured data.In:2nd SIAM Int'l. Conf. on Data Mining,April 2002. 被引量:1
  • 5Zaki M J. Efficiently mining frequent trees in a forest. In SIGKDD'2002 Edmonton, Alberta, Canada. 被引量:1
  • 6Cooley R,Mobasher B, Srivastava J. Web Mining: Information and Pattern Discovery on the World Wide Web. In: 8th IEEE Intl. Conf. on Tools with AI,1997.?A?A?A?A 被引量:1
  • 7Li Q,Moon B. Indexing and querying XML data for regular path expressions. In: 27th Int'l. Conf. on Very Large Data Bases,2001. 被引量:1
  • 8Shapiro B,Zhang K. Comparing multiple RNA secondary strutures using tree comparisons. Computer Applications in Biosciences,1990,6(4) :309~318. 被引量:1
  • 9Inokuchi A,Washio T,Motoda H. An apriori-based algorithm for mining frequent substructures from graph data. In: 4th European Conf. on Principles of Knowledge Discovery and Data Mining,Sep. 2000. 被引量:1
  • 10Kuramochi M,Karypis G. Frequent subgraph discovery. In: 1st IEEE Int'l Conf. on Data Mining,Nov. 2001. 被引量:1

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部