期刊文献+

离散型区间概率和离散型第二类模糊概率随机变量数学期望的性质与求解

Discrete probability interval and discrete second kinds of fuzzy probability random variables and the mathematical expectation properties and solution
原文传递
导出
摘要 连续型第二类模糊概率随机变量问题是指连续型的清晰事件——模糊概率,而离散型第二类模糊概率是指利用模糊分解定理将一系列的模糊概率随机变量的数学期望问题转化成为一系列的区间概率随机变量的数学期望进行求解。因此,本文将对离散型区间概率以及离散型第二类模糊概率随机变量的数学期望的定义以及算法进行分析。 Continuous type second kinds of fuzzy random variables is continuous and clear event--fuzzy probability, and discrete type second fuzzy probability refers to the use of fuzzy decomposition theorem of mathematical expectation of fuzzy random variables probability of a series mathematical expectation random variable is transformed into a series of interval probability to solve.Therefore, this paper will analyze the definition of mathematical expectation of discrete interval probability and discrete type second kinds of fuzzy random variables and algorithm.
作者 魏育飞
机构地区 内蒙古河套学院
出处 《佳木斯教育学院学报》 2013年第2期131-131,135,共2页 Journal of Jiamusi Education Institute
关键词 离散型 区间概率 模糊概率 随机变量 数学期望 discrete probability interval fuzzy probability random variables mathematical expectation
  • 相关文献

参考文献5

二级参考文献32

  • 1[1]Catlett J. On changing continuous attributes into ordered discreteattributes. In: Proc European Working Session on Learning (EWSL91). LNAI-482, Porto,Portugal, 1991. 164-178 被引量:1
  • 2[2]Dougherty J, Kohavi R, Sahami M. Supervised and unsupervised discretizationof continuous features. In: Proc the 12th International Conference, Morgan KaufmannPublishers, 1995.194-202 被引量:1
  • 3[3]Quinlan J R. C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann,1993 被引量:1
  • 4[4]Fayyad U, Irani K. Multi-interval discretizaton of continuous-valuedattributes for classification learning. In: Proc the 13th International JointConference on Artificial Intelligence, San Mateo, CA. Morgan Kaufmann Publishers,1993. 1022-1027 被引量:1
  • 5[5]Li G, Tong F. WILD: Weighted information-loss discretization algorithm forordinal attributes. In: Proc Conference on Intelligent Information Processing, the16th IFIP World Computer Congress 2000, Beijing, China, 2000.254-527 被引量:1
  • 6[6]Quinlan J R. Improved use of continuous attributes in C4.5. Journal ofArtificial Intelligence Research, 1996,4(1):77-90 被引量:1
  • 7[7]Wong A K C, Chiu D K Y. Synthesizing statistical knowledge from incompletemixed-mode data. IEEE Trans Pattern Analysis and Machine Intelligence, 1987,PAMI-9(6):796-805 被引量:1
  • 8[8]Banfield J D, Raftery A E. Model based Gaussian and non-Gaussian clustering.Biometrics, 1993,49(3):803-821 被引量:1
  • 9[9]Mackay D J C. Information Theory, Inference and Learning Algorithms.Cambridge: Cambridge University Press, 2000 被引量:1
  • 10[10]Dempster A P, Laird N M, Rubin D B. Maximum likelihood for incomplete data viathe EM algorithm. Journal of the Royal Statistical Society, Series B, 1977,39(1):1-38 被引量:1

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部