We report on a conceptually new type of waveguide in glass by femtosecond laser direct writing,namely,photonic latticelike waveguide(PLLW).The PLLWfs core consists of well-distributed and densified tracks with a sub-m...We report on a conceptually new type of waveguide in glass by femtosecond laser direct writing,namely,photonic latticelike waveguide(PLLW).The PLLWfs core consists of well-distributed and densified tracks with a sub-micron size of 0.62μm in width.Specifically,a PLLW inscribed as hexagonal-shape input with a ring-shape output side was implemented to converse Gaussian mode to doughnut-like mode,and high conversion efficiency was obtained with a low insertion loss of 1.65 dB at 976 nm.This work provides a new freedom for design and fabrication of the refractive index profile of waveguides with sub-micron resolution and broadens the functionalities and application scenarios of femtosecond laser direct-writing waveguides in future 3D integrated photonic systems.展开更多
Flexible electronics such as mechanically compliant displays,sensors and solar cells,have important applications in the fields of energy,national defence and biomedicine,etc.Various types of flexible electronics have ...Flexible electronics such as mechanically compliant displays,sensors and solar cells,have important applications in the fields of energy,national defence and biomedicine,etc.Various types of flexible electronics have been proposed or developed by the improvements in structural designs,material properties and device integrations.However,the manufacturing of flexible electronics receives little attention,which limits its mass production and industrialization.The increasing demands on the size,functionality,resolution ratio and reliability of flexible electronics bring several significant challenges in their manufacturing processes.This work aims to report the state-of-art technologies and applications of flexible electronics manufacturing.Three key technologies including electrohydrodynamic direct-writing,flip chip and automatic optical inspection are highlighted.The mechanism and developments of these technologies are discussed in detail.Based on these technologies,the present work develops three kinds of manufacturing equipment,i.e.,inkjet printing manufacturing equipment,robotized additive manufacturing equipment,and roll-to-roll manufacturing equipment.The advanced manufacturing processes,equipment and systems for flexible electronics pave the way for applications of new displays,smart sensing skins and epidermal electronics,etc.By reviewing the developments of flexible electronics manufacturing technology and equipment,it can be found that the existing advances greatly promote the applications and commercialization of flexible electronics.Since flexible electronics manufacturing contains many multi-disciplinary problems,the current investigations are confronted with great challenges.Therefore,further developments of the reviewed manufacturing technology and equipment are necessary to break the current limitations of manufacturing resolution,efficiency and reliability.展开更多
A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynami...A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor-insulator--conductor multi-layer ~nterconne^ction structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is util^zed to f^bricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained ~es^l~s show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10-7 Ω.m and 1.39×10-7 Ω.m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor-insulator-conductor multi-layer interconnections in the electronic industry.展开更多
In this study,orthogonal experiments were designed to explore the optimal process parameters for preparing polycaprolactone(PCL)scaffolds by the near-field direct-writing melt electrospinning(NFDWMES)technology.Based ...In this study,orthogonal experiments were designed to explore the optimal process parameters for preparing polycaprolactone(PCL)scaffolds by the near-field direct-writing melt electrospinning(NFDWMES)technology.Based on the optimal process parameters,the PCL scaffolds with different thicknesses,gaps and structures were manufactured and the corresponding hydrophilicities were characterized.The PCL scaffolds were modified by chitosan(CS)and hyaluronic acid(HA)to improve biocompatibility and hydrophilicity.Both Fourier transform infrared spectroscopy(FTIR)analysis and antibacterial experimental results show that the chitosan and hyaluronic acid adhere to the surface of PCL scaffolds,suggesting that the modification plays a positive role in biocompatibility and antibacterial effect.The PCL scaffolds were then employed as a carrier to culture cells.The morphology and distribution of the cells observed by a fluorescence microscope demonstrate that the modified PCL scaffolds have good biocompatibility,and the porous structure of the scaffolds is conducive to adhesion and deep growth of cells.展开更多
Searching for low-cost widely applicable electrocatalysts for hydrogen production is very important. Here, 3D self-supported NiS2/MoS2 heterostructures were synthesized via a one-step millisecond- laser-direct-writing...Searching for low-cost widely applicable electrocatalysts for hydrogen production is very important. Here, 3D self-supported NiS2/MoS2 heterostructures were synthesized via a one-step millisecond- laser-direct-writing method;these structures exhibited excellent hydrogen evolution reaction activities over a wide pH range. The current density of 10 mA cm^-2 could be reached at low overpotentials of 98 and 159 mV in alkaline and neutral electrolytes, respectively. Such an outstanding electrocatalytic performance should be attributed to the integration of the 3D self-supported nanostructures, the high conductivity of the framework, and particularly, the incalculable heterointerfaces formed between NiS2 and MoS2. This work provides a new strategy to study interfacial engineering and the mechanism of interface enhancement.展开更多
基金This work was supported by the National Key R&D Program of China(No.2021YFB2800500)National Natural Science Foundation of China(Nos.U20A20211,51902286,61775192,61905215,51772270,62105297,and 61905093)+1 种基金Zhejiang Provincial Natural Science Foundation(No.LQ22F050022)State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,and Fundamental Research Funds for the Central Universities.
文摘We report on a conceptually new type of waveguide in glass by femtosecond laser direct writing,namely,photonic latticelike waveguide(PLLW).The PLLWfs core consists of well-distributed and densified tracks with a sub-micron size of 0.62μm in width.Specifically,a PLLW inscribed as hexagonal-shape input with a ring-shape output side was implemented to converse Gaussian mode to doughnut-like mode,and high conversion efficiency was obtained with a low insertion loss of 1.65 dB at 976 nm.This work provides a new freedom for design and fabrication of the refractive index profile of waveguides with sub-micron resolution and broadens the functionalities and application scenarios of femtosecond laser direct-writing waveguides in future 3D integrated photonic systems.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFA0703200)the National Natural Science Foundation of China(Grant Nos.51820105008 and 52188102)。
文摘Flexible electronics such as mechanically compliant displays,sensors and solar cells,have important applications in the fields of energy,national defence and biomedicine,etc.Various types of flexible electronics have been proposed or developed by the improvements in structural designs,material properties and device integrations.However,the manufacturing of flexible electronics receives little attention,which limits its mass production and industrialization.The increasing demands on the size,functionality,resolution ratio and reliability of flexible electronics bring several significant challenges in their manufacturing processes.This work aims to report the state-of-art technologies and applications of flexible electronics manufacturing.Three key technologies including electrohydrodynamic direct-writing,flip chip and automatic optical inspection are highlighted.The mechanism and developments of these technologies are discussed in detail.Based on these technologies,the present work develops three kinds of manufacturing equipment,i.e.,inkjet printing manufacturing equipment,robotized additive manufacturing equipment,and roll-to-roll manufacturing equipment.The advanced manufacturing processes,equipment and systems for flexible electronics pave the way for applications of new displays,smart sensing skins and epidermal electronics,etc.By reviewing the developments of flexible electronics manufacturing technology and equipment,it can be found that the existing advances greatly promote the applications and commercialization of flexible electronics.Since flexible electronics manufacturing contains many multi-disciplinary problems,the current investigations are confronted with great challenges.Therefore,further developments of the reviewed manufacturing technology and equipment are necessary to break the current limitations of manufacturing resolution,efficiency and reliability.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.51035002)the National Natural Science Foundation of China(Grant No.51305373)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120121120035)
文摘A multi-layer interconnection structure is a basic component of electronic devices, and printing of the multi-layer interconnection structure is the key process in printed electronics. In this work, electrohydrodynamic direct-writing (EDW) is utilized to print the conductor-insulator--conductor multi-layer ~nterconne^ction structure. Silver ink is chosen to print the conductor pattern, and a polyvinylpyrrolidone (PVP) solution is util^zed to f^bricate the insulator layer between the bottom and top conductor patterns. The influences of EDW process parameters on the line width of the printed conductor and insulator patterns are studied systematically. The obtained ~es^l~s show that the line width of the printed structure increases with the increase of the flow rate, but decreases with the increase of applied voltage and PVP content in the solution. The average resistivity values of the bottom and top silver conductor tracks are determined to be 1.34 × 10-7 Ω.m and 1.39×10-7 Ω.m, respectively. The printed PVP layer between the two conductor tracks is well insulated, which can meet the insulation requirement of the electronic devices. This study offers an alternative, fast, and cost-effective method of fabricating conductor-insulator-conductor multi-layer interconnections in the electronic industry.
基金This work was supported by the National Science Foundation of China(No.51973168).
文摘In this study,orthogonal experiments were designed to explore the optimal process parameters for preparing polycaprolactone(PCL)scaffolds by the near-field direct-writing melt electrospinning(NFDWMES)technology.Based on the optimal process parameters,the PCL scaffolds with different thicknesses,gaps and structures were manufactured and the corresponding hydrophilicities were characterized.The PCL scaffolds were modified by chitosan(CS)and hyaluronic acid(HA)to improve biocompatibility and hydrophilicity.Both Fourier transform infrared spectroscopy(FTIR)analysis and antibacterial experimental results show that the chitosan and hyaluronic acid adhere to the surface of PCL scaffolds,suggesting that the modification plays a positive role in biocompatibility and antibacterial effect.The PCL scaffolds were then employed as a carrier to culture cells.The morphology and distribution of the cells observed by a fluorescence microscope demonstrate that the modified PCL scaffolds have good biocompatibility,and the porous structure of the scaffolds is conducive to adhesion and deep growth of cells.
基金financially supported by the National Natural Science Foundation of China(51572188 and 51822106)~~
文摘Searching for low-cost widely applicable electrocatalysts for hydrogen production is very important. Here, 3D self-supported NiS2/MoS2 heterostructures were synthesized via a one-step millisecond- laser-direct-writing method;these structures exhibited excellent hydrogen evolution reaction activities over a wide pH range. The current density of 10 mA cm^-2 could be reached at low overpotentials of 98 and 159 mV in alkaline and neutral electrolytes, respectively. Such an outstanding electrocatalytic performance should be attributed to the integration of the 3D self-supported nanostructures, the high conductivity of the framework, and particularly, the incalculable heterointerfaces formed between NiS2 and MoS2. This work provides a new strategy to study interfacial engineering and the mechanism of interface enhancement.