As wafer circuit width shrinks down to less than ten nanometers in recent years,stringent quality control in the wafer manufacturing process is increasingly important.Thanks to the coupling of neighboring cluster tool...As wafer circuit width shrinks down to less than ten nanometers in recent years,stringent quality control in the wafer manufacturing process is increasingly important.Thanks to the coupling of neighboring cluster tools and coordination of multiple robots in a multi-cluster tool,wafer production scheduling becomes rather complicated.After a wafer is processed,due to high-temperature chemical reactions in a chamber,the robot should be controlled to take it out of the processing chamber at the right time.In order to ensure the uniformity of integrated circuits on wafers,it is highly desirable to make the differences in wafer post-processing time among the individual tools in a multicluster tool as small as possible.To achieve this goal,for the first time,this work aims to find an optimal schedule for a dual-arm multi-cluster tool to regulate the wafer post-processing time.To do so,we propose polynomial-time algorithms to find an optimal schedule,which can achieve the highest throughput,and minimize the total post-processing time of the processing steps.We propose a linear program model and another algorithm to balance the differences in the post-processing time between any pair of adjacent cluster tools.Two industrial examples are given to illustrate the application and effectiveness of the proposed method.展开更多
基金supported in part by the National Natural Science Foundation of China(61673123)the Natural Science Foundation of Guangdong Province,China(2020A151501482)+1 种基金the Science and Technology development fund(FDCT),Macao SAR(0083/2021/A2,0015/2020/AMJ)Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(2020B1212030010)。
文摘As wafer circuit width shrinks down to less than ten nanometers in recent years,stringent quality control in the wafer manufacturing process is increasingly important.Thanks to the coupling of neighboring cluster tools and coordination of multiple robots in a multi-cluster tool,wafer production scheduling becomes rather complicated.After a wafer is processed,due to high-temperature chemical reactions in a chamber,the robot should be controlled to take it out of the processing chamber at the right time.In order to ensure the uniformity of integrated circuits on wafers,it is highly desirable to make the differences in wafer post-processing time among the individual tools in a multicluster tool as small as possible.To achieve this goal,for the first time,this work aims to find an optimal schedule for a dual-arm multi-cluster tool to regulate the wafer post-processing time.To do so,we propose polynomial-time algorithms to find an optimal schedule,which can achieve the highest throughput,and minimize the total post-processing time of the processing steps.We propose a linear program model and another algorithm to balance the differences in the post-processing time between any pair of adjacent cluster tools.Two industrial examples are given to illustrate the application and effectiveness of the proposed method.