A detailed microstructure analysis and LA-ICPMS U-Pb dating have been done for zir- cons of Weishan granite from Hunan Province, South China. The results indicate that the Weishan granite is a multistage batholith for...A detailed microstructure analysis and LA-ICPMS U-Pb dating have been done for zir- cons of Weishan granite from Hunan Province, South China. The results indicate that the Weishan granite is a multistage batholith formed during the late Indosinian-early Yanshanian time. The intruded time of the late Indosinian granite is 211.0±1.6Ma and 215.7±1.9Ma (two samples), whereas that of the early Yanshanian granite is 187.4±3.5Ma and 184.5±5.1Ma (two samples). In combination with other geochronological data for Indosinian rocks of South China and the adjacent region, it is inferred that the late Indosinian granites of South China (especially Hunan Province) are probably formed under extension regime as a consequence of post-collision stress relaxation, which is a spontaneous response to intracontinental thickening attributed to the collision and extrusion of two Indosinian seams, namely Qinling-Dabie and Song Ma. Moreover, it is also deduced that the early Yanshanian granites of Hunan Province could not be directly related with the subduction of Paleo-Pacific plate towards Eurasian continent, and they are most likely derivation of the mid- or lower-crustal materials because of decompressional melting under the continuous extension setting.展开更多
Mineral liberation analyser(MLA) was applied to quantitatively analyze the rare earth ore from Weishan in Shandong. Mineralogy parameters, such as mineral composition, occurrence states of rare earth elements(REEs) an...Mineral liberation analyser(MLA) was applied to quantitatively analyze the rare earth ore from Weishan in Shandong. Mineralogy parameters, such as mineral composition, occurrence states of rare earth elements(REEs) and valuable elements, mineral embedded grain size distribution, mineral association and liberation, are obtained. Results show that the contents of REEs and other valuable elements mainly contained in the ore were La 1.02 wt%, Ce 4.29 wt%, Pr 0.34 wt%, Nd 0.84 wt%, Sr 3.4 wt%and Ba 26.53 wt%, respectively. The REEs mainly occur in bastnaesite and carbocernaite in the form of independent mineral and the contents of bastnaesite and carbocernaite in the ore were 5.96 wt% and12.30 wt%, respectively. 67.34% of strontium occurs in carbocernaite and the rest occurs in celestobarite and strontianite mineral. 92.71% of barium occurs in barite. Liberation of main rare-earth minerals such as bastnaesite and carbocernaite is more than 80% when the grinding fineness is78.42% passing 74 μm. The research results could be employed to provide detailed basic theoretical data for further improvement of the beneficiation process flow and the processing index of rare earth ore, the recycling of other valuable minerals and the comprehensive utilization of tailings.展开更多
The Weishan REE deposit is located at the eastern part of North China Craton(NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ag...The Weishan REE deposit is located at the eastern part of North China Craton(NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages(129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REEbearing carbonatite mainly consists of Generation-1 igneous calcite(G-1 calcite) with a small amount of Generation-2 hydrothermal calcite(G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ^(13)Cv-PDB(-6.5‰ to -7.9‰) and δ^(13)OV-SMOW(8.48‰-9.67‰) values are similar to those of primary, mantlederived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO_2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.展开更多
[Objective] The aim was to analyze the content of heavy metals in surface sediment in Weishan Lake and further assess its ecological risk.[Method] Heavy metal pollution in surface sediment in Weishan Lake was studied,...[Objective] The aim was to analyze the content of heavy metals in surface sediment in Weishan Lake and further assess its ecological risk.[Method] Heavy metal pollution in surface sediment in Weishan Lake was studied,and the pollution indices and potential ecological risk indices of Cu,Zn,Pb,Cd and Cr were calculated to assess the potential ecological risk of heavy metal pollution.[Result] In surface sediment in Weishan Lake,the average contents of Cu,Zn,Pb,Cd,Cr and Ni were 64.78,185.05,78.76,0.17,37.76 and 46.84mg/kg respectively.Cr and Cd weren’t beyond standards in all stations,while Cu and Pb exceeded standards in all stations,with average super-standard multiple of 0.85 and 0.31,respectively,and Zn content wasn’t beyond standard in S2 station,with average super-standard multiple of 0.24.The average pollution indices of Cu,Zn,Pb,Cd and Cr were 1.85,1.23,1.31,0.34 and 0.47 respectively,with average comprehensive pollution index of 5.21,which showed that heavy metal pollution was light.In addition,heavy metal pollution in entryway portion and sea-route portion were more serious than that of breeding portion.Potential ecological risk assessment showed that the average potential ecological risk indices of Cu,Zn,Pb,Cd and Cr were 9.25,1.23,6.56,10.34 and 0.94 respectively,with average comprehensive potential ecological risk index of 28.33,and it revealed that potential ecological risk of heavy metals was slight.Besides,the potential ecological risk order of heavy metal pollution was sea-route portion>entryway portion>breeding portion.[Conclusion] The study could provide references for the regulation and improvement of ecological environment in Weishan Lake in the east route of south-to-north water transfer project.展开更多
In 1997, more than 60 stone carvings were unearthed from the bed of the Xuehe River at Daguankou village, Xiazhen town, Weishan county, Shandong province. Among them are steles with the date 5th year, Kaiyuan reign, T...In 1997, more than 60 stone carvings were unearthed from the bed of the Xuehe River at Daguankou village, Xiazhen town, Weishan county, Shandong province. Among them are steles with the date 5th year, Kaiyuan reign, Tang dynasty, with images and the date 25th year, Kaiyuan reign, or without date mark, as well broken stone Buddhist statues, pedestals and structural members of temple buildings. It has been known from the inscription on an image-stele of the 2nd year, Daye reign, Sui period, unearthed at the same locality in February, 1989, that a stone bridge was built there at that time and repeatedly repaired later. This suggests that the stone carvings concentrated in the River bed were unearthed as remains of the bridge which must have been built of stones left over by a temple that was abandoned during the fall of Buddhism. The use of the stone material taken from ruined temples for the construction of stone bridges in the mid and late Tang period reflect an aspect of the historical events that Buddhism flourished and fell in the Tang period.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.40372036)the Doctoral Foundation of Ministry of Education of PRC(Grant No.20030284026).
文摘A detailed microstructure analysis and LA-ICPMS U-Pb dating have been done for zir- cons of Weishan granite from Hunan Province, South China. The results indicate that the Weishan granite is a multistage batholith formed during the late Indosinian-early Yanshanian time. The intruded time of the late Indosinian granite is 211.0±1.6Ma and 215.7±1.9Ma (two samples), whereas that of the early Yanshanian granite is 187.4±3.5Ma and 184.5±5.1Ma (two samples). In combination with other geochronological data for Indosinian rocks of South China and the adjacent region, it is inferred that the late Indosinian granites of South China (especially Hunan Province) are probably formed under extension regime as a consequence of post-collision stress relaxation, which is a spontaneous response to intracontinental thickening attributed to the collision and extrusion of two Indosinian seams, namely Qinling-Dabie and Song Ma. Moreover, it is also deduced that the early Yanshanian granites of Hunan Province could not be directly related with the subduction of Paleo-Pacific plate towards Eurasian continent, and they are most likely derivation of the mid- or lower-crustal materials because of decompressional melting under the continuous extension setting.
基金Project supported by the National Natural Sciences Foundation of China(51734001,41472071)
文摘Mineral liberation analyser(MLA) was applied to quantitatively analyze the rare earth ore from Weishan in Shandong. Mineralogy parameters, such as mineral composition, occurrence states of rare earth elements(REEs) and valuable elements, mineral embedded grain size distribution, mineral association and liberation, are obtained. Results show that the contents of REEs and other valuable elements mainly contained in the ore were La 1.02 wt%, Ce 4.29 wt%, Pr 0.34 wt%, Nd 0.84 wt%, Sr 3.4 wt%and Ba 26.53 wt%, respectively. The REEs mainly occur in bastnaesite and carbocernaite in the form of independent mineral and the contents of bastnaesite and carbocernaite in the ore were 5.96 wt% and12.30 wt%, respectively. 67.34% of strontium occurs in carbocernaite and the rest occurs in celestobarite and strontianite mineral. 92.71% of barium occurs in barite. Liberation of main rare-earth minerals such as bastnaesite and carbocernaite is more than 80% when the grinding fineness is78.42% passing 74 μm. The research results could be employed to provide detailed basic theoretical data for further improvement of the beneficiation process flow and the processing index of rare earth ore, the recycling of other valuable minerals and the comprehensive utilization of tailings.
基金supported by the Shandong Geological Survey (Nos. 203027160439, 213027160438)Geological Investigation Work Project of China Geological Survey (Grant No. 12120115069701)+1 种基金Scientific Innovation Practice Project of Postgraduates of Chang’an University (2018019)Fundamental Research Funds for the Central Universities (No. 300102278402)
文摘The Weishan REE deposit is located at the eastern part of North China Craton(NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages(129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REEbearing carbonatite mainly consists of Generation-1 igneous calcite(G-1 calcite) with a small amount of Generation-2 hydrothermal calcite(G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ^(13)Cv-PDB(-6.5‰ to -7.9‰) and δ^(13)OV-SMOW(8.48‰-9.67‰) values are similar to those of primary, mantlederived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO_2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.
基金Supported by Natural Science Foundation of Shandong Province (ZR2010CL004)Doctoral Research Foundation of Zaozhuang University+2 种基金Key Program of Zaozhuang UniversityYouth Foundation of Zaozhuang UniversityKey Discipline Construction Project of Hydrobiology of Zaozhuang University
文摘[Objective] The aim was to analyze the content of heavy metals in surface sediment in Weishan Lake and further assess its ecological risk.[Method] Heavy metal pollution in surface sediment in Weishan Lake was studied,and the pollution indices and potential ecological risk indices of Cu,Zn,Pb,Cd and Cr were calculated to assess the potential ecological risk of heavy metal pollution.[Result] In surface sediment in Weishan Lake,the average contents of Cu,Zn,Pb,Cd,Cr and Ni were 64.78,185.05,78.76,0.17,37.76 and 46.84mg/kg respectively.Cr and Cd weren’t beyond standards in all stations,while Cu and Pb exceeded standards in all stations,with average super-standard multiple of 0.85 and 0.31,respectively,and Zn content wasn’t beyond standard in S2 station,with average super-standard multiple of 0.24.The average pollution indices of Cu,Zn,Pb,Cd and Cr were 1.85,1.23,1.31,0.34 and 0.47 respectively,with average comprehensive pollution index of 5.21,which showed that heavy metal pollution was light.In addition,heavy metal pollution in entryway portion and sea-route portion were more serious than that of breeding portion.Potential ecological risk assessment showed that the average potential ecological risk indices of Cu,Zn,Pb,Cd and Cr were 9.25,1.23,6.56,10.34 and 0.94 respectively,with average comprehensive potential ecological risk index of 28.33,and it revealed that potential ecological risk of heavy metals was slight.Besides,the potential ecological risk order of heavy metal pollution was sea-route portion>entryway portion>breeding portion.[Conclusion] The study could provide references for the regulation and improvement of ecological environment in Weishan Lake in the east route of south-to-north water transfer project.
文摘In 1997, more than 60 stone carvings were unearthed from the bed of the Xuehe River at Daguankou village, Xiazhen town, Weishan county, Shandong province. Among them are steles with the date 5th year, Kaiyuan reign, Tang dynasty, with images and the date 25th year, Kaiyuan reign, or without date mark, as well broken stone Buddhist statues, pedestals and structural members of temple buildings. It has been known from the inscription on an image-stele of the 2nd year, Daye reign, Sui period, unearthed at the same locality in February, 1989, that a stone bridge was built there at that time and repeatedly repaired later. This suggests that the stone carvings concentrated in the River bed were unearthed as remains of the bridge which must have been built of stones left over by a temple that was abandoned during the fall of Buddhism. The use of the stone material taken from ruined temples for the construction of stone bridges in the mid and late Tang period reflect an aspect of the historical events that Buddhism flourished and fell in the Tang period.