期刊文献+

Geochronology and mineralogy of the Weishan carbonatite in Shandong province, eastern China 被引量:12

Geochronology and mineralogy of the Weishan carbonatite in Shandong province, eastern China
下载PDF
导出
摘要 The Weishan REE deposit is located at the eastern part of North China Craton(NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages(129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REEbearing carbonatite mainly consists of Generation-1 igneous calcite(G-1 calcite) with a small amount of Generation-2 hydrothermal calcite(G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ^(13)Cv-PDB(-6.5‰ to -7.9‰) and δ^(13)OV-SMOW(8.48‰-9.67‰) values are similar to those of primary, mantlederived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO_2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage. The Weishan REE deposit is located at the eastern part of North China Craton(NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages(129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REEbearing carbonatite mainly consists of Generation-1 igneous calcite(G-1 calcite) with a small amount of Generation-2 hydrothermal calcite(G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ^(13)Cv-PDB(-6.5‰ to -7.9‰) and δ^(13)OV-SMOW(8.48‰-9.67‰) values are similar to those of primary, mantlederived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO_2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第2期769-785,共17页 地学前缘(英文版)
基金 supported by the Shandong Geological Survey (Nos. 203027160439, 213027160438) Geological Investigation Work Project of China Geological Survey (Grant No. 12120115069701) Scientific Innovation Practice Project of Postgraduates of Chang’an University (2018019) Fundamental Research Funds for the Central Universities (No. 300102278402)
关键词 Weishan REE DEPOSIT CARBONATITE CALCITE APATITE DEPOSIT model Weishan REE deposit Carbonatite Calcite Apatite Deposit model
  • 相关文献

参考文献16

二级参考文献293

共引文献1814

同被引文献252

引证文献12

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部