In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theo...In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theory and applied objects of uncertain type of AHP are introduced, and then the optimal transitive matrix method is chosen to calculate the interval number judgment matrix, which makes the weights of indices more reliable and accurate. Finally, with Harbin Songhua River Cable-Stayed Bridge as an example, an index system and an assessment model are proposed for the condition assessment of this bridge, and by using uncertain type of AHP, the weights of assessment indices are fixed and the final assessment results of the bridge are calculated, which proves the feasibility and practicability of this method. The application of this assessment method can provide the scientific basis for maintenance and management of long-span cable-stayed bridges.展开更多
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is pre...An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.展开更多
The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite ...The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.展开更多
The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral in...The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral inequality method and Lyapunov-Krasovskii stability theory were used to derive new delay-dependent bounded real lemmas for a non-fragile state-feedback controller containing additive or multiplicative uncertainties. They ensure that the closed-loop system is internally stable and has a given H∞ disturbance attenuation level. Then, methods of designing a non-fragile H∞ state feedback controller were presented. No parameters need to be tuned and can be easily determined by solving linear matrix inequalities. Finally, the validity of the proposed methods was demonstrated by a numerical example with the asymptotically stable curves of system state and controller output under the initial condition of x(0)=1 0 -1]T and h=0.8 time-delay boundary.展开更多
This paper considers the issue of delay-dependent exponential stability for time-delay systems. Both nominal and uncertain systems are investigated. New sufficient conditions in terms of linear matrix inequalities(LMI...This paper considers the issue of delay-dependent exponential stability for time-delay systems. Both nominal and uncertain systems are investigated. New sufficient conditions in terms of linear matrix inequalities(LMIs) are obtained. These criteria are simple owing to the use of an integral inequality. The model transformation approaches,bounding techniques for cross terms and slack matrices are all avoided in the derivation. Rigorous proof and numerical examples showed that the proposed criteria and those based on introducing slack matrices are equivalent.展开更多
This paper studies the exponential stability of interval time-varying dynamical system with multidelay. By the matrix measure and delay differential inequality, some sufficient conditions for exponential stability of ...This paper studies the exponential stability of interval time-varying dynamical system with multidelay. By the matrix measure and delay differential inequality, some sufficient conditions for exponential stability of interval time-varying dynamical system with multidelay are established. These conditions are an improvement and extension of the results achieved in earlier papers. Finally, a numerical example is given to demonstrate our result.展开更多
For a multiple-oscillator system that is subject to the uncertain gains ranging within compact sets,this paper presents a constructive stabilization design.Motivated by nested-saturation control methods,a nested contr...For a multiple-oscillator system that is subject to the uncertain gains ranging within compact sets,this paper presents a constructive stabilization design.Motivated by nested-saturation control methods,a nested controller that contains multiplicative coefficients is directly designed,and these coefficients are then determined in the stability analysis.By skillfully making transformations,elaborately constructing Lyapunov functions,and using an M-matrix principle,the stability analysis leads to the explicit inequality condition that is expressed by directly using the system parameters.展开更多
基金Specialized Research Fund for the Doctoral Programof Higher Education (No20050213008)the Scientific and TechnicalPlan Item of Communications Department of Heilongjiang Province ofChina (2004)
文摘In order to guarantee the safety service and life-span of long-span cable-stayed bridges, the uncertain type of analytic hierarchy process (AHP) method is adopted to access the bridge condition. The correlative theory and applied objects of uncertain type of AHP are introduced, and then the optimal transitive matrix method is chosen to calculate the interval number judgment matrix, which makes the weights of indices more reliable and accurate. Finally, with Harbin Songhua River Cable-Stayed Bridge as an example, an index system and an assessment model are proposed for the condition assessment of this bridge, and by using uncertain type of AHP, the weights of assessment indices are fixed and the final assessment results of the bridge are calculated, which proves the feasibility and practicability of this method. The application of this assessment method can provide the scientific basis for maintenance and management of long-span cable-stayed bridges.
基金Project (No. 60421002) supported by the National Natural ScienceFoundation of China
文摘An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.
基金Project (Nos. 60434020 and 60604003) supported by the NationalNatural Science Foundation of China
文摘The design problem of delay-dependent robust control for uncertain discrete singular systems with time-varying delay is addressed in this paper. The uncertainty is assumed to be norm-bounded. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent robust stability condition is derived and expressed in terms of linear matrix inequalities (LMIs). A suitable robust state feedback control law is presented, which guarantees that the resultant closed-loop system is regular, causal and stable for all admissible uncertainties. Numerical examples are given to demonstrate the applicability of the proposed method.
基金Project(60574014) supported by the National Natural Science Foundation of ChinaProject(20050533015) supported by the Doctor Subject Foundation of ChinaProject(60425310) supported by the National Science Foundation for Distinguished Youth Scholars, China
文摘The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral inequality method and Lyapunov-Krasovskii stability theory were used to derive new delay-dependent bounded real lemmas for a non-fragile state-feedback controller containing additive or multiplicative uncertainties. They ensure that the closed-loop system is internally stable and has a given H∞ disturbance attenuation level. Then, methods of designing a non-fragile H∞ state feedback controller were presented. No parameters need to be tuned and can be easily determined by solving linear matrix inequalities. Finally, the validity of the proposed methods was demonstrated by a numerical example with the asymptotically stable curves of system state and controller output under the initial condition of x(0)=1 0 -1]T and h=0.8 time-delay boundary.
基金Project (Nos. 60434020 and 60604003) supported by the NationalNatural Science Foundation of China
文摘This paper considers the issue of delay-dependent exponential stability for time-delay systems. Both nominal and uncertain systems are investigated. New sufficient conditions in terms of linear matrix inequalities(LMIs) are obtained. These criteria are simple owing to the use of an integral inequality. The model transformation approaches,bounding techniques for cross terms and slack matrices are all avoided in the derivation. Rigorous proof and numerical examples showed that the proposed criteria and those based on introducing slack matrices are equivalent.
文摘This paper studies the exponential stability of interval time-varying dynamical system with multidelay. By the matrix measure and delay differential inequality, some sufficient conditions for exponential stability of interval time-varying dynamical system with multidelay are established. These conditions are an improvement and extension of the results achieved in earlier papers. Finally, a numerical example is given to demonstrate our result.
文摘For a multiple-oscillator system that is subject to the uncertain gains ranging within compact sets,this paper presents a constructive stabilization design.Motivated by nested-saturation control methods,a nested controller that contains multiplicative coefficients is directly designed,and these coefficients are then determined in the stability analysis.By skillfully making transformations,elaborately constructing Lyapunov functions,and using an M-matrix principle,the stability analysis leads to the explicit inequality condition that is expressed by directly using the system parameters.