期刊文献+

温度场的非概率凸集合理论模型的摄动数值解法 被引量:1

Perturbed Numerical Algorithm of Nonprobabilistic Convex Set Theoretical Models for Temperature Field
下载PDF
导出
摘要 采用凸模型描述结构温度场的物理参数、初始条件和边界条件的不确定性,探讨热传导的不确定性问题.将矩阵摄动理论与凸模型方法相结合,导出了有界不确定性参数瞬态温度场响应上、下界的摄动计算公式,并通过数值算例对凸模型方法和区间分析法的计算结果进行了比较.结果表明,凸模型求得的温度场响应的范围比区间分析法求得的大. Abstract: In order to investigate the uncertainties of heat conduction, the uncertainties of physical parameters and initial and boundary conditions of structural temperature fields were described using convex models. The perturbation formulas of the upper and lower bounds of responses of temperature fields with unknown-but-bounded parameters were derived via the "combination of the matrix perturbation theory and the convex models. A comparison between the results obtained respectively by the convex models and the interval analysis method was made by a numerical example. The results show that the width of the upper and lower bounds of temperature field responses calculated by the convex models is greater than that calculated by the interval analysis method.
出处 《西南交通大学学报》 EI CSCD 北大核心 2009年第1期101-105,共5页 Journal of Southwest Jiaotong University
基金 国家863计划资助项目(2006AA04Z402) 陕西省自然科学基金资助项目(2005A009)
关键词 不确定参数 温度场 凸模型 矩阵摄动 uncertain parameter temperature field convex model matrix perturbation
  • 相关文献

参考文献8

二级参考文献31

共引文献88

同被引文献12

  • 1Zhao Lei,Chen Qiu.Neumann Dynamic Stochastic Finite ElementMethod of Vibration for Structures with Stochastic Parameters toRandom Excitation[J].Computers and Structures,2000,77(6):651-657. 被引量:1
  • 2T D Hien,M Kleiber.Finite Element Analysis Based on StochasticHamilton Variation Principle[J].Computer and Structures,1990,37(6):893-902. 被引量:1
  • 3M Grigoriu.Statistically Equivalent Solutions of Stochastic Mechan-ics Problems[J].ASCE Journal of Engineering Mechanics 1991,117(8):1906-1918. 被引量:1
  • 4H Niederreiter,J Spanier.Monte Carlo and Quasi-Monte CarloMethods[M].Berlin:Springer,2000. 被引量:1
  • 5A Cherki,G Plessis,B Lallemand,T Tison and P Level.FuzzyBehavior of Mechanical Systems with Uncertain Boundary Condi-tions[J].Computer Methods in Applied Mechanics and Engineer-ing,2000,189(3):863-873. 被引量:1
  • 6J P Sawyer,S S Rao.Strength-based Reliability and Fracture As-sessment of fuzzy Mechanical and Structural Systems[J].AIAAJournal,1999,37(1):84-92. 被引量:1
  • 7S S Rao,L Cao.Fuzzy Boundary Element Method for the Analysisof Imprecisely Defined System[J].AIAA Journal,2001,39(9):1788-1797. 被引量:1
  • 8Ma Juan,Chen Jian-jun,Gao Wei.Stationary Random Re-sponse Analysis of Linear Fuzzy Truss[J].Structural Engineer-ing&Mechanics,2006,22(4):469-481. 被引量:1
  • 9Z P Qiu,S H Chen,I Elishakoff.Bounds of Eigenvalues forStructures with an Interval Description of Uncertain-but-non-random Parameters[J].Chaos,Soliton,and Fractral,1996,7(3):425-434. 被引量:1
  • 10肖盛燮,王平义,吕恩琳.模糊数学在土木和水利上的应用[M].北京:人民交通出版社,2004. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部