期刊文献+

结构疲劳寿命估计的集合理论模型 被引量:13

A SET-THEORETICAL MODEL FOR ESTIMATION OF STRUCTURAL FATIGUE LIFETIME
下载PDF
导出
摘要 对于材料性质和载荷具有不确定性结构进行疲劳寿命估计时,结构疲劳寿命往往是这些不确定性变量的函数.以凸分析和区间数学为理论基础,将这些不确定变量用椭球和区间定量化,基于Taylor级数展开,提出了近似估计结构疲劳寿命的非概率集合理论模型—凸模型方法和区间分析方法.它们克服了概率方法需要预先知道不确定变量的概率分布密度或大量统计数据的局限性,并且计算量小.通过数值算例,将凸模型方法、区间分析方法与概率方法进行了比较研究,数值计算结果表明了这两种非概率方法对线性及非线性形式的结构寿命估计均能提供令人相当满意的精度. Fatigue lifetime of a structure with uncertainties in material properties and external loading is estimated. Fatigue lifetime of a structure, in general, is the function of these uncertain factors. Based on convex analysis and interval mathematics, quantifying the uncertainties as ellipsoidal and interval numbers, two new non-probabilistic set-theoretical models, which approximately estimate the fatigue lifetime through first-order Taylor series, are presented. The presented two methods not only overcome the shortcoming that probabilistic method needs a large number of data in advance, but also save the computation time. Numerical examples illustrate that the two methods can provide sufficient accuracy as probabilistic method for any kinds of lifetime functions, including linear or nonlinear.
出处 《固体力学学报》 CAS CSCD 北大核心 2006年第1期91-97,共7页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金委与中国工程物理研究院联合基金项目(10376002) 航天支撑技术基金项目(20032.2BH03) 国家杰出青年科学基金项目(10425208)资助
关键词 疲劳寿命估计 凸模型 区间分析 TAYLOR级数 不确定性 fatigue lifetime estimation, convex model, interval analysis method ,Taylor series, uncertainty
  • 相关文献

参考文献7

  • 1高镇同,熊峻江著..疲劳可靠性[M].北京:北京航空航天大学出版社,2000:410.
  • 2Alefeld G,Herzberger J.Introductions to Interval Computations.New York:Academic Press,1983 被引量:1
  • 3Moore R E.Methods and Applications of Interval Analysis.London:Prenice-Hall,Inc,1979 被引量:1
  • 4Ben Haim Y,Elishakoff I.Convex Models of Uncertainty in Applied Mechanics.Amsterdam :Elsevier Science Publishers,1990 被引量:1
  • 5邱志平,王晓军.结构疲劳寿命的区间估计[J].力学学报,2005,37(5):653-657. 被引量:14
  • 6Wu Y T,Millwater H R,Cruse T A.An advanced probability structural analysis method for implicit performance functions.AIAA Journal,1990,28:1663~1669 被引量:1
  • 7Wirsching T Y T,Martin W S.Advanced fatigue reliability analysis.International Journal of Fatigue,1991,13(5):389~394 被引量:1

二级参考文献9

  • 1Chen X, Lind NC. Fast probability integration by three parameter normal trail approximation. Structural Safety,1983, 1:269~276. 被引量:1
  • 2Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Computers and Structures,1978, 9:489~494. 被引量:1
  • 3Wu YT, Wirsching PH. New algorithm for structural reliability estimation. Journal of Engineering Mechanics, 1987,113(9): 1319~1336. 被引量:1
  • 4Wirsching PH, Torng TY, Martin WS. Advanced fatigue reliability analysis. International Journal of Fatigue, 1991,13(5): 389~394. 被引量:1
  • 5Alefeld G, Herzberger J. Introductions to Interval Computations. New York: Academic Press, 1983. 被引量:1
  • 6Moore RE. Methods and Applications of Interval Analysis.London: Prenice-Hall, Inc, 1979. 被引量:1
  • 7Qiu ZP, Chen SH, Elishakoff I. Natural frequencies of structures with uncertain but nonrandom parameters. Journal of Optimization Theory and Applications, 1995, 86:669~683. 被引量:1
  • 8Qiu ZP, Müller PC, Frommer A. Stability robustness bounds for linear state-space models with structured uncertainty based on ellipsoidal set-theoretic approach. Mathematics and Computers in Simulation, 2001, 56:35~53. 被引量:1
  • 9Qiu ZP, Elishakoff I. Anti-optimization of structures with large uncertain-but-non-random parameters via interval analysis. Computer Methods in Applied Mechanics and Engineering, 1998, 152(3-4): 361~372. 被引量:1

共引文献13

同被引文献92

引证文献13

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部