This paper aims at exploring the tectonic characteristics of the South China Continent (SCC) and extracting the universal tec- tonic rules from these characteristics,to help enrich the plate tectonic theory and bett...This paper aims at exploring the tectonic characteristics of the South China Continent (SCC) and extracting the universal tec- tonic rules from these characteristics,to help enrich the plate tectonic theory and better understand the continental dynamic system. For this purpose, here we conduct a multi-disciplinary investigation and combine it with the previous studies to reas- sess the tectonics and evolution of SCC and propose that the tectonic framework of the continent comprises two blocks, three types of tectonic units, four deformation systems, and four evolutionary stages with distinctive mechanism and tectonic characteris- tics since the Neoproterozoic. The four evolutionary stages are: (1) The amalgamation and break-up of the Neoproterozoic plates, typically the intracontinental rifting. (2) The early Paleozoic and Mesozoic intracontinental orogeny confined by plate tectonics, forming two composite tectonic domains. (3) The parallel operation of the Yangtze cratonization and intracontinental orogeny, and multi-phase reactivation of the Yangtze craton. (4) The association and differentiation evolution of plate tectonics and intraconti- nental tectonics, and the dynamic characteristics under the Meso-Cenozoic modem global plate tectonic regime.展开更多
The application of direct methanol fuel cells (DMFC) is hampered by high cost, low activity, and poor CO tolerance by the Pt catalyst. Herein, we designed a fancy 3D hybrid by anchoring tungsten nitride (WN) nanop...The application of direct methanol fuel cells (DMFC) is hampered by high cost, low activity, and poor CO tolerance by the Pt catalyst. Herein, we designed a fancy 3D hybrid by anchoring tungsten nitride (WN) nanoparticles (NPs), of about 3 nm in size, into a 3D carbon nanotube-reduced graphene oxide framework (CNT-rGO) using an assembly route. After depositing Pt, the contacted and strongly coupled Pt-WN NPs were formed, resulting in electron transfer from Pt to WN. The 3D Pt-WN/CNT-rGO hybrid can be used as a bifunctional electrocatalyst for both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). In MOR, the catalysts showed excellent CO tolerance and a high mass activity of 702.4 mA.mgpt-1, 2.44 and 3.81 times higher than those of Pt/CNT-rGO and Pt/C(JM) catalysts, respectively. The catalyst also exhibited a more positive onset potential (1.03 V), higher mass activity (151.3 mA.mgpt-1), and better cyclic stability and tolerance in MOR than ORR. The catalyst mainly exhibited a 4e-transfer mechanism with a low peroxide yield. The high activity was closely related to hybrid structure. That is, the 3D framework provided a favorable path for mass-transfer, the CNT-rGO support was favorable for charge transfer, and strongly coupled Pt-WN can enhance the catalytic activity and CO-tolerance of Pt. Pt-WN/CNT-rGO represents a new 3D catalytic platform that is promising as an electrocatalyst for DMFC because it can catalyze both ORR and MOR in an acidic medium with good stability and highly efficient Pt utilization.展开更多
Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated,especia...Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated,especially for the existence of dynamic stall. How to get better aerodynamic performance arouses lots of interests in the design procedure of a straight Darrieus wind turbine. In this paper,mainly the effects of number of blades and tip speed ratio are discussed. Based on the numerical investigation,an assumed asymmetric straight Darrieus wind turbine is proposed to improve the averaged power coefficient. As to the numerical method,the flow around the turbine is simulated by solving the 2D unsteady Navier-Stokes equation combined with continuous equation. The time marching method on a body-fitted coordinate system based on MAC (Marker-and-Cell) method is used. O-type grid is generated for the whole calculation domain. The characteristics of tangential and normal force are discussed related with dynamic stall of the blade. Averaged power coefficient per period of rotating is calculated to evaluate the eligibility of the turbine.展开更多
Small-sized axial fans are used as air coolers for electric equipments.But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices.Therefore,higher rotatio...Small-sized axial fans are used as air coolers for electric equipments.But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices.Therefore,higher rotational speed design is conducted,although it causes the deterioration of the efficiency and the increase of noise.Then the adoption of contra-rotating rotors for the small-sized axial fan is proposed for the improvement of the performance.In the present paper,the performance and the internal flow condition of the small-sized axial fan are shown as a first step of the research for the contra-rotating small-sized axial fan and the important points to apply contra-rotating rotors to the small-sized axial fan are discussed.Furthermore,the numerical flow analysis is conducted to investigate the performance of the contra-rotating small-sized axial fan and internal flow conditions and pressure distributions are clarified and the effect of contra-rotating rotors is considered.展开更多
Carbon-supported platinum-lanthanum(Pt-Ln)intermetallic compound(IMC)nanoparticles with high activity and robust stability have been demonstrated as promising cathode catalysts for proton-exchange membrane fuel cells....Carbon-supported platinum-lanthanum(Pt-Ln)intermetallic compound(IMC)nanoparticles with high activity and robust stability have been demonstrated as promising cathode catalysts for proton-exchange membrane fuel cells.However,the preparation of Pt-Ln IMC catalysts needs high-temperature annealing treatment that inevitably causes nanoparticle sintering,resulting in significant reduction of the electrochemical surface area and mass-based activity.Here,we prepare small-sized M-doped Pt_(5)Ce(M=Ga,Cd,and Sb)IMCs catalysts via a low-melting-point metal doping strategy.We speculate that the doping of low-melting-point metals can facilitate the generation of vacancies in the crystal lattice through thermal activation and thus reduce the kinetic barriers for the formation of intermetallic Pt_(5)Ce catalysts.The prepared Ga-doped Pt_(5)Ce catalyst exhibits a higher electrochemical active surface area(81 m^(2)·gPt^(-1))and a larger mass activity(0.45 A·mgPt^(-1)at 0.9 V)over the undoped Pt_(5)Ce and commercial Pt/C catalysts.In the membrane electrode assembly test,the Ga-doped Pt_(5)Ce cathode delivers a power density of 0.98 W·cm^(-2)at 0.67 V,along with a voltage loss of only 27 mV at 0.8 A·cm^(-2)at the end of accelerated stability test.展开更多
基金supported by the special grant of Ministry of Science and Technology of the People’s Republic of China for State Key Laboratory of Continental Dynamics,Northwest University,the key research project of Sinopec Group(Grant No.YPH08012)the National Natural Science Foundation of China(Grant Nos.41190072,41190073,41190074,41190070)
文摘This paper aims at exploring the tectonic characteristics of the South China Continent (SCC) and extracting the universal tec- tonic rules from these characteristics,to help enrich the plate tectonic theory and better understand the continental dynamic system. For this purpose, here we conduct a multi-disciplinary investigation and combine it with the previous studies to reas- sess the tectonics and evolution of SCC and propose that the tectonic framework of the continent comprises two blocks, three types of tectonic units, four deformation systems, and four evolutionary stages with distinctive mechanism and tectonic characteris- tics since the Neoproterozoic. The four evolutionary stages are: (1) The amalgamation and break-up of the Neoproterozoic plates, typically the intracontinental rifting. (2) The early Paleozoic and Mesozoic intracontinental orogeny confined by plate tectonics, forming two composite tectonic domains. (3) The parallel operation of the Yangtze cratonization and intracontinental orogeny, and multi-phase reactivation of the Yangtze craton. (4) The association and differentiation evolution of plate tectonics and intraconti- nental tectonics, and the dynamic characteristics under the Meso-Cenozoic modem global plate tectonic regime.
基金We gratefully acknowledge the support of this research by the Key Program of the National Natural Science Foundation of China (No. 21031001), the National Natural Science Foundation of China (Nos. 21371053, 21571054, and 21401048), Program for Innovative Research Team in University (No. IRT-1237), Special Research Fund for the Doctoral Program of Higher Education of China (No. 20112301110002), the Natural Science Foundation of Heilongjiang Province (No. QC2014C007), China Postdoctoral Science Foundation funded project (No. 2015T80374), and Excellent Youth Foundation of Heilongjiang University.
文摘The application of direct methanol fuel cells (DMFC) is hampered by high cost, low activity, and poor CO tolerance by the Pt catalyst. Herein, we designed a fancy 3D hybrid by anchoring tungsten nitride (WN) nanoparticles (NPs), of about 3 nm in size, into a 3D carbon nanotube-reduced graphene oxide framework (CNT-rGO) using an assembly route. After depositing Pt, the contacted and strongly coupled Pt-WN NPs were formed, resulting in electron transfer from Pt to WN. The 3D Pt-WN/CNT-rGO hybrid can be used as a bifunctional electrocatalyst for both methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). In MOR, the catalysts showed excellent CO tolerance and a high mass activity of 702.4 mA.mgpt-1, 2.44 and 3.81 times higher than those of Pt/CNT-rGO and Pt/C(JM) catalysts, respectively. The catalyst also exhibited a more positive onset potential (1.03 V), higher mass activity (151.3 mA.mgpt-1), and better cyclic stability and tolerance in MOR than ORR. The catalyst mainly exhibited a 4e-transfer mechanism with a low peroxide yield. The high activity was closely related to hybrid structure. That is, the 3D framework provided a favorable path for mass-transfer, the CNT-rGO support was favorable for charge transfer, and strongly coupled Pt-WN can enhance the catalytic activity and CO-tolerance of Pt. Pt-WN/CNT-rGO represents a new 3D catalytic platform that is promising as an electrocatalyst for DMFC because it can catalyze both ORR and MOR in an acidic medium with good stability and highly efficient Pt utilization.
文摘Straight Darrieus wind turbine has attractive characteristics such as the ability to accept wind from random direction and easy installation and maintenance. But its aerodynamic performance is very complicated,especially for the existence of dynamic stall. How to get better aerodynamic performance arouses lots of interests in the design procedure of a straight Darrieus wind turbine. In this paper,mainly the effects of number of blades and tip speed ratio are discussed. Based on the numerical investigation,an assumed asymmetric straight Darrieus wind turbine is proposed to improve the averaged power coefficient. As to the numerical method,the flow around the turbine is simulated by solving the 2D unsteady Navier-Stokes equation combined with continuous equation. The time marching method on a body-fitted coordinate system based on MAC (Marker-and-Cell) method is used. O-type grid is generated for the whole calculation domain. The characteristics of tangential and normal force are discussed related with dynamic stall of the blade. Averaged power coefficient per period of rotating is calculated to evaluate the eligibility of the turbine.
基金supports by the project research aid from The University of Tokushima,Japan Science and Technology Agency and Komiya research aid
文摘Small-sized axial fans are used as air coolers for electric equipments.But there is a strong demand for higher power of fans according to the increase of quantity of heat from electric devices.Therefore,higher rotational speed design is conducted,although it causes the deterioration of the efficiency and the increase of noise.Then the adoption of contra-rotating rotors for the small-sized axial fan is proposed for the improvement of the performance.In the present paper,the performance and the internal flow condition of the small-sized axial fan are shown as a first step of the research for the contra-rotating small-sized axial fan and the important points to apply contra-rotating rotors to the small-sized axial fan are discussed.Furthermore,the numerical flow analysis is conducted to investigate the performance of the contra-rotating small-sized axial fan and internal flow conditions and pressure distributions are clarified and the effect of contra-rotating rotors is considered.
基金supported by the National Natural Science Foundation of China(Nos.22065016 and 22071225)the Plan for Anhui Major Provincial Science&Technology Project(Nos.202203a0520013 and 2021d05050006)the fellowship of China Postdoctoral Science Foundation(No.2022M712179).
文摘Carbon-supported platinum-lanthanum(Pt-Ln)intermetallic compound(IMC)nanoparticles with high activity and robust stability have been demonstrated as promising cathode catalysts for proton-exchange membrane fuel cells.However,the preparation of Pt-Ln IMC catalysts needs high-temperature annealing treatment that inevitably causes nanoparticle sintering,resulting in significant reduction of the electrochemical surface area and mass-based activity.Here,we prepare small-sized M-doped Pt_(5)Ce(M=Ga,Cd,and Sb)IMCs catalysts via a low-melting-point metal doping strategy.We speculate that the doping of low-melting-point metals can facilitate the generation of vacancies in the crystal lattice through thermal activation and thus reduce the kinetic barriers for the formation of intermetallic Pt_(5)Ce catalysts.The prepared Ga-doped Pt_(5)Ce catalyst exhibits a higher electrochemical active surface area(81 m^(2)·gPt^(-1))and a larger mass activity(0.45 A·mgPt^(-1)at 0.9 V)over the undoped Pt_(5)Ce and commercial Pt/C catalysts.In the membrane electrode assembly test,the Ga-doped Pt_(5)Ce cathode delivers a power density of 0.98 W·cm^(-2)at 0.67 V,along with a voltage loss of only 27 mV at 0.8 A·cm^(-2)at the end of accelerated stability test.