Rivers in the Liaohe River Estuary area have been seriously polluted by discharges of wastewater containing petroleum pol- lutants and nutrients. In this paper, The Enhanced Stream Water Quality Model (QUAL2K) and i...Rivers in the Liaohe River Estuary area have been seriously polluted by discharges of wastewater containing petroleum pol- lutants and nutrients. In this paper, The Enhanced Stream Water Quality Model (QUAL2K) and its revised model as well as One-dimensional Tide Mean Model (1D model) were applied to predict and assess the water quality of the tidal fiver reach of the Liaohe River Estuary. Dissolved oxygen (DO), biochemical oxygen demand (BODs), ammonia nitrogen (NH3-N) and total phosphorus (TP) were chosen as water quality indices in the two model simulations. The modelled results show that the major reasons for degraded rivers remain petroleum and non-point source pollution. Tidal water also has a critical effect on the variation of water quality. The sensitivity analysis identifies that flow rate, point load and diffuse load are the most sensitive parameters for the four water quality indices in the revised QUAL2K simulation. Uncertainty analysis based on a Monte Carlo simulation gives the probability distribution of the four wa- ter quality indices at two locations (6.50 km and 44.84 km from the river mouth). The statistical outcomes indicate that the observed data fall within the 90% confidence intervals at all sites measured, and show that the revised QUAL2K gives better results in simulating the water quality of a tidal fiver.展开更多
Ndarugu River, Kenya, during its course through the different agricultural and industrial areas of Gatundu, Gachororo and Juja farms, receives untreated industrial, domestic and agricultural waste of point source disc...Ndarugu River, Kenya, during its course through the different agricultural and industrial areas of Gatundu, Gachororo and Juja farms, receives untreated industrial, domestic and agricultural waste of point source discharges from coffee and tea factories. During wet season the water is also polluted by non-point (diffuse) sources created by runoff carrying soil, fertilizer and pesticide residues from the catchment area. This study involved the calibration of water quality model QUAL2K to predict the water quality of this segment of the river. The model was calibrated and validated for flow discharge (Q), temperature (T°), flow velocity (V), biochemical oxygen demand (BOD5), dissolved oxygen (DO) and nitrate (NO3-N), using data collected and analyzed during field and laboratory measurements done in July and November-December 2013. The model was then used in simulation and its performance was evaluated using statistical criteria based on correlation coefficient (R2) and standard errors (SE) between the observed and simulated data. The model reflected the field data quite well with minor exceptions. In spite of these minor differences between the measured and simulated data set at some points, the calibration and validation results are acceptable especially for developing countries where the financial resources for frequent monitoring works and higher accuracy data analysis are very limited. The water is being polluted by the human activities in the catchment. There is need for proper control of wastewater by various techniques, and preliminary treatment of waste discharges prior to effluent disposal. Management of the watershed is necessary so as to protect the river from the adverse impacts of agricultural activities and save it from further deterioration.展开更多
River Ghataprabha, during its course through Belgaum district in Karnataka state (India), receives untreated domestic waste from Gokak town and other neighboring villages situated on the bank of the river. The prese...River Ghataprabha, during its course through Belgaum district in Karnataka state (India), receives untreated domestic waste from Gokak town and other neighboring villages situated on the bank of the river. The present study involves the application of water quality model QUAL2K to predict the water quality of this polluted segment of the river. The model was calibrated and validated for biochemical oxygen demand (BOD), dissolved oxygen (DO) and total nitrogen (TN) in pre-monsoon season. Data for calibration and validation were obtained after the field and laboratory measurements. The performance of the model was evaluated using statistics based on standard errors (SE) and mean multiplicative errors (MME). The model represented the field data quite well with some exceptions. In spite of some differences between the measured and simulated data sets at some points, the calibration and validation results are acceptable especially for the developing countries where the financial resources are often limited for frequent monitoring campaigns and higher accuracy data analysis.展开更多
基金Under the auspices of Water Pollution Control and Management Key Project of Science and Technology of China(No.2013ZX07202-007)Liaoning Hundred-Thousand-Ten Thousand Talents Program
文摘Rivers in the Liaohe River Estuary area have been seriously polluted by discharges of wastewater containing petroleum pol- lutants and nutrients. In this paper, The Enhanced Stream Water Quality Model (QUAL2K) and its revised model as well as One-dimensional Tide Mean Model (1D model) were applied to predict and assess the water quality of the tidal fiver reach of the Liaohe River Estuary. Dissolved oxygen (DO), biochemical oxygen demand (BODs), ammonia nitrogen (NH3-N) and total phosphorus (TP) were chosen as water quality indices in the two model simulations. The modelled results show that the major reasons for degraded rivers remain petroleum and non-point source pollution. Tidal water also has a critical effect on the variation of water quality. The sensitivity analysis identifies that flow rate, point load and diffuse load are the most sensitive parameters for the four water quality indices in the revised QUAL2K simulation. Uncertainty analysis based on a Monte Carlo simulation gives the probability distribution of the four wa- ter quality indices at two locations (6.50 km and 44.84 km from the river mouth). The statistical outcomes indicate that the observed data fall within the 90% confidence intervals at all sites measured, and show that the revised QUAL2K gives better results in simulating the water quality of a tidal fiver.
文摘Ndarugu River, Kenya, during its course through the different agricultural and industrial areas of Gatundu, Gachororo and Juja farms, receives untreated industrial, domestic and agricultural waste of point source discharges from coffee and tea factories. During wet season the water is also polluted by non-point (diffuse) sources created by runoff carrying soil, fertilizer and pesticide residues from the catchment area. This study involved the calibration of water quality model QUAL2K to predict the water quality of this segment of the river. The model was calibrated and validated for flow discharge (Q), temperature (T°), flow velocity (V), biochemical oxygen demand (BOD5), dissolved oxygen (DO) and nitrate (NO3-N), using data collected and analyzed during field and laboratory measurements done in July and November-December 2013. The model was then used in simulation and its performance was evaluated using statistical criteria based on correlation coefficient (R2) and standard errors (SE) between the observed and simulated data. The model reflected the field data quite well with minor exceptions. In spite of these minor differences between the measured and simulated data set at some points, the calibration and validation results are acceptable especially for developing countries where the financial resources for frequent monitoring works and higher accuracy data analysis are very limited. The water is being polluted by the human activities in the catchment. There is need for proper control of wastewater by various techniques, and preliminary treatment of waste discharges prior to effluent disposal. Management of the watershed is necessary so as to protect the river from the adverse impacts of agricultural activities and save it from further deterioration.
文摘River Ghataprabha, during its course through Belgaum district in Karnataka state (India), receives untreated domestic waste from Gokak town and other neighboring villages situated on the bank of the river. The present study involves the application of water quality model QUAL2K to predict the water quality of this polluted segment of the river. The model was calibrated and validated for biochemical oxygen demand (BOD), dissolved oxygen (DO) and total nitrogen (TN) in pre-monsoon season. Data for calibration and validation were obtained after the field and laboratory measurements. The performance of the model was evaluated using statistics based on standard errors (SE) and mean multiplicative errors (MME). The model represented the field data quite well with some exceptions. In spite of some differences between the measured and simulated data sets at some points, the calibration and validation results are acceptable especially for the developing countries where the financial resources are often limited for frequent monitoring campaigns and higher accuracy data analysis.