Diabetic peripheral neuropathy(DPN) is a progressive neurodegenerative disease of peripheral nervous system with high energy requirement. The adenosine monophosphate-activated protein kinase(AMPK)/peroxisome prolifera...Diabetic peripheral neuropathy(DPN) is a progressive neurodegenerative disease of peripheral nervous system with high energy requirement. The adenosine monophosphate-activated protein kinase(AMPK)/peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α) axis plays a key role in regulating mitochondrial energy metabolism. Increasing preclinical evidences have shown that inhibition of AMPK/PGC-1α pathway leading to mitochondrial dysfunction in neurons or Schwann cells contributes to neuron apoptosis, distal axonopathy and nerve demyelination in DPN. Some Chinese medicine formulae or extracts from herbs may have potential neuroprotective effects on DPN via activating AMPK/PGC-1α pathway and improving mitochondrial function.展开更多
INTRODUCTIONAccording to the demographics, the world population over 60 years will double from 605 million to 2 billion people between 2000 and 2050. Aging is a complex process in which the organism and its ability to...INTRODUCTIONAccording to the demographics, the world population over 60 years will double from 605 million to 2 billion people between 2000 and 2050. Aging is a complex process in which the organism and its ability to respond to external stresses become progressive decline.展开更多
Several metabolic gene expressions are regulated in concert with muscle glycogen status. We hypothesized that intermittent exercise performed at high but sub-maximal intensities with long recovery periods would induce...Several metabolic gene expressions are regulated in concert with muscle glycogen status. We hypothesized that intermittent exercise performed at high but sub-maximal intensities with long recovery periods would induce a low glycogen state that would stimul- ate peroxisome proliferator-activated receptor-γ coa- ctivator-1α (PGC1-α) and pyruvate dehydrogenase kinase-4 (PDK-4) gene expression in muscle. Nine young human subjects performed two intermittent exercise sessions. One session consisted of 60 s cycling bouts at VO2max (IE100%), and the other session consisted of 75 s cycling bouts at 80% VO2max (IE80%). Twelve bouts of exercise were completed in both sessions with a 4 min rest between each bout. Muscle specimens were obtained at pre-exercise and immediately, 1.5 h and 3 h post-exercise. Muscle gly- cogen was significantly decreased after both sessions (IE100%, 94.1 ± 5.8 to 38.7 ± 5.5 mmol/kg w.w.;IE80%, 94.6 ± 9.1 to 53.3 ± 4.8 mmol/kg w.w.;both P α and PDK- 4 mRNA expression were significantly increased after exercise in both IE100% and IE80% (PGC-1α: ~3.7 and ~2.9-fold, respectively;PDK-4: ~11.1 and ~3.5-fold, respectively;all P 100% than in IE80% (P a and PDK-4 mRNA expression, suggesting that increasing exercise intensity contributes to muscle glycogen depletion and PDK-4 mRNA expression in human skeletal muscle.展开更多
基金Supported by the National Natural Science Foundation of China(No.81473639)the Fundamental Research Funds for the Central Universities(No.3332018037)
文摘Diabetic peripheral neuropathy(DPN) is a progressive neurodegenerative disease of peripheral nervous system with high energy requirement. The adenosine monophosphate-activated protein kinase(AMPK)/peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α) axis plays a key role in regulating mitochondrial energy metabolism. Increasing preclinical evidences have shown that inhibition of AMPK/PGC-1α pathway leading to mitochondrial dysfunction in neurons or Schwann cells contributes to neuron apoptosis, distal axonopathy and nerve demyelination in DPN. Some Chinese medicine formulae or extracts from herbs may have potential neuroprotective effects on DPN via activating AMPK/PGC-1α pathway and improving mitochondrial function.
基金This work was supported by grants from the National I Natural Science Foundation of China (No. 20971063) and doctoral scientific research funds (No. 318051315).
文摘INTRODUCTIONAccording to the demographics, the world population over 60 years will double from 605 million to 2 billion people between 2000 and 2050. Aging is a complex process in which the organism and its ability to respond to external stresses become progressive decline.
文摘Several metabolic gene expressions are regulated in concert with muscle glycogen status. We hypothesized that intermittent exercise performed at high but sub-maximal intensities with long recovery periods would induce a low glycogen state that would stimul- ate peroxisome proliferator-activated receptor-γ coa- ctivator-1α (PGC1-α) and pyruvate dehydrogenase kinase-4 (PDK-4) gene expression in muscle. Nine young human subjects performed two intermittent exercise sessions. One session consisted of 60 s cycling bouts at VO2max (IE100%), and the other session consisted of 75 s cycling bouts at 80% VO2max (IE80%). Twelve bouts of exercise were completed in both sessions with a 4 min rest between each bout. Muscle specimens were obtained at pre-exercise and immediately, 1.5 h and 3 h post-exercise. Muscle gly- cogen was significantly decreased after both sessions (IE100%, 94.1 ± 5.8 to 38.7 ± 5.5 mmol/kg w.w.;IE80%, 94.6 ± 9.1 to 53.3 ± 4.8 mmol/kg w.w.;both P α and PDK- 4 mRNA expression were significantly increased after exercise in both IE100% and IE80% (PGC-1α: ~3.7 and ~2.9-fold, respectively;PDK-4: ~11.1 and ~3.5-fold, respectively;all P 100% than in IE80% (P a and PDK-4 mRNA expression, suggesting that increasing exercise intensity contributes to muscle glycogen depletion and PDK-4 mRNA expression in human skeletal muscle.