A novel capacitive sensor for pazufloxacin mesilate (pazufloxacin) determination was developed by electropolymerizing p-aminobenzene sulfonic (p-ABSA) and molecularly imprinted polymers (MPs), which was synthesized th...A novel capacitive sensor for pazufloxacin mesilate (pazufloxacin) determination was developed by electropolymerizing p-aminobenzene sulfonic (p-ABSA) and molecularly imprinted polymers (MPs), which was synthesized through thermal radical copolymerization of metharylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) in the presence of pazufloxacin template molecules, on the gold electrode surface. Furthermore, 1-dedecanethiol was used to insulate the modified electrode. Alternating current (ac) impedance experiments were carried out with a Model IM6e to obtain the capacitance responses. Under the optimum conditions, the sensor showed linear capacitance response to pazufloxacin in the range of 5 ng·mL?1 to 5 μg·mL?1 with a relative standard deviation (RSD) 5.3% (n=7) and a detection limit of 1.8 ng·mL?1. The recoveries for different concentration levels of pazufloxacin samples varied from 94.0% to 102.0%. Electrochemical experiments indicated the capacitive sensor exhibited good sensitivity and selectivity and showed excellent parameters of regeneration and stability.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 20675064)the Natural Science Foundation of Chongqing City (Grant No. CSTC-2004BB4149 and 2005BB4100)High Technology Project Foundation of Southwest University (Grant No. XSGX02).
文摘A novel capacitive sensor for pazufloxacin mesilate (pazufloxacin) determination was developed by electropolymerizing p-aminobenzene sulfonic (p-ABSA) and molecularly imprinted polymers (MPs), which was synthesized through thermal radical copolymerization of metharylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) in the presence of pazufloxacin template molecules, on the gold electrode surface. Furthermore, 1-dedecanethiol was used to insulate the modified electrode. Alternating current (ac) impedance experiments were carried out with a Model IM6e to obtain the capacitance responses. Under the optimum conditions, the sensor showed linear capacitance response to pazufloxacin in the range of 5 ng·mL?1 to 5 μg·mL?1 with a relative standard deviation (RSD) 5.3% (n=7) and a detection limit of 1.8 ng·mL?1. The recoveries for different concentration levels of pazufloxacin samples varied from 94.0% to 102.0%. Electrochemical experiments indicated the capacitive sensor exhibited good sensitivity and selectivity and showed excellent parameters of regeneration and stability.