We consider a variant of M/M/1 where customers arrive singly or in pairs. Each single and one member of each pair is called primary;the other member of each pair is called secondary. Each primary joins the queue upon ...We consider a variant of M/M/1 where customers arrive singly or in pairs. Each single and one member of each pair is called primary;the other member of each pair is called secondary. Each primary joins the queue upon arrival. Each secondary is delayed in a separate area, and joins the queue when “pushed” by the next arriving primary. Thus each secondary joins the queue followed immediately by the next primary. This arrival/delay mechanism appears to be new in queueing theory. Our goal is to obtain the steady-state probability density function (pdf) of the workload, and related quantities of interest. We utilize a typical sample path of the workload process as a physical guide, and simple level crossing theorems, to derive model equations for the steady-state pdf. A potential application is to the processing of electronic signals with error free components and components that require later confirmation before joining the queue. The confirmation is the arrival of the next signal.展开更多
The imperfect production center complexity to do with job maximization strategies is shown to have some criteria under which an optimal solution exists. 2010 Subject Classification: 60K25, 97M40,
In this paper, we study an M/M/1 queue with multiple working vacations under following Bernoulli control policy: at the instants of the completion of a service in vacation, the server will interrupt the vacation and e...In this paper, we study an M/M/1 queue with multiple working vacations under following Bernoulli control policy: at the instants of the completion of a service in vacation, the server will interrupt the vacation and enter regular busy period with probability 1 p (if there are customers in the queue) or continue the vacation with probability p. For this model, we drive the analytic expression of the stationary queue length and demonstrate stochastic decomposition structures of the stationary queue length and waiting time, also we obtain the additional queue length and the additional delay of this model. The results we got agree with the corresponding results for working vacation model with or without vacation interruption if we set p = 0 or p = 1, respectively.展开更多
文摘We consider a variant of M/M/1 where customers arrive singly or in pairs. Each single and one member of each pair is called primary;the other member of each pair is called secondary. Each primary joins the queue upon arrival. Each secondary is delayed in a separate area, and joins the queue when “pushed” by the next arriving primary. Thus each secondary joins the queue followed immediately by the next primary. This arrival/delay mechanism appears to be new in queueing theory. Our goal is to obtain the steady-state probability density function (pdf) of the workload, and related quantities of interest. We utilize a typical sample path of the workload process as a physical guide, and simple level crossing theorems, to derive model equations for the steady-state pdf. A potential application is to the processing of electronic signals with error free components and components that require later confirmation before joining the queue. The confirmation is the arrival of the next signal.
文摘The imperfect production center complexity to do with job maximization strategies is shown to have some criteria under which an optimal solution exists. 2010 Subject Classification: 60K25, 97M40,
基金Foundation item: Supported by the National Science Foundation of China(60874083) Supported by the 2011 National Statistical Science Development Funds(2011LY014) Supported by the 2012 Soft Science Devel- opment Funds of Science and Technology Committee of Henan Province(122400450090)
文摘In this paper, we study an M/M/1 queue with multiple working vacations under following Bernoulli control policy: at the instants of the completion of a service in vacation, the server will interrupt the vacation and enter regular busy period with probability 1 p (if there are customers in the queue) or continue the vacation with probability p. For this model, we drive the analytic expression of the stationary queue length and demonstrate stochastic decomposition structures of the stationary queue length and waiting time, also we obtain the additional queue length and the additional delay of this model. The results we got agree with the corresponding results for working vacation model with or without vacation interruption if we set p = 0 or p = 1, respectively.