摘要
研究经典的N-策略M/M/1多重工作休假排队.应用GI/M/1型Markov过程对该排队系统建模并用矩阵解析方法求解,不但得到了排队模型平稳队长分布的具体结果,还给出了平稳状态时服务台具体处于第几次工作休假的概率,这些关于服务台状态更为精确的描述是该模型的新结果.
In this paper,we consider the classical M/M/1 queue with N-policy and multiple working vacations.We describe the queuing model by a special GI/M/1 type Markov process,and by matrix analytic method,we not only give explicit expression for the stationary queue length distribution,but also give the probability of the exact number of vacations that the sever has taken.Such more accurate descriptions for the status of the server are new results for the queue model.
作者
周高军
彭培让
张宏波
ZHOU Gao-jun;PENG Pei-rang;ZHANG Hong-bo(School of Statistics and Mathematics,Henan Finance University,Zhengzhou 450046,China)
出处
《数学的实践与认识》
北大核心
2020年第19期119-125,共7页
Mathematics in Practice and Theory
基金
河南省科技攻关计划项目(172102210242)。