This paper presents an analysis to forecast the loads of an isolated area where the history of load is not available or the history may not represent the realistic demand of electricity. The analysis is done through l...This paper presents an analysis to forecast the loads of an isolated area where the history of load is not available or the history may not represent the realistic demand of electricity. The analysis is done through linear regression and based on the identification of factors on which electrical load growth depends. To determine the identification factors, areas are selected whose histories of load growth rate known and the load growth deciding factors are similar to those of the isolated area. The proposed analysis is applied to an isolated area of Bangladesh, called Swandip where a past history of electrical load demand is not available and also there is no possibility of connecting the area with the main land grid system.展开更多
We propose a restoration strategy using microgrids for restoring power supply to critical loads after an extreme event and thereby enhancing the resilience of the distribution power grid. The limited capacities of dis...We propose a restoration strategy using microgrids for restoring power supply to critical loads after an extreme event and thereby enhancing the resilience of the distribution power grid. The limited capacities of distributed generators(DGs) within the microgrids and those of intermittent energy sources such as wind and photovoltaic power are considered. An enhanced strategy model of the distribution network is established for maximizing the power supply to critical loads. Firstly, the importance of the load is quantified by using the analytic hierarchy process(AHP) and the model of the microgrid output is further improved. In the demand response mechanism, an interruptible load is used to suppress the fluctuation in the distributed power output. Secondly, piecewise linearization method is applied to address the power flow constraints. Then, the resilience enhancement model of the distribution network is transformed into a mixed integer quadratic programming problem. The CPLEX solver is adopted to solve the above problem on the MATLAB platform. Finally, the proposed method is verified by applying it to practical scenarios.展开更多
Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savin...Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savings and injection pressure control can not be .attained based on conventional valve control system. Moreover, the injection water can not be supplied directly by water hydraulic proportional control system. Poor efficiency and control performance are presented by current trial systems, which pressurize injection water by compressed air. In this paper, a novel water hydraulic system is developed applying an accumulator for energy saving. And a new differential pressure control method is proposed by using pressure cylinder and water hydraulic proportional pressure relief valve for back pressure control. Aiming at design of linear controller for injection water pressure regulation, a linear load model is approximately built through computational fluid dynamics(CFD) simulation on two-phase flow cavity filling process with variable temperature and viscosity, and a linear model of pressure control system is built with the load model and linearization of water hydraulic components. According to the simulation, model based feedback is brought forward to compensate the pressure decrease during accumulator discharge and eliminate the derivative element of the system. Meanwhile, the steady-state error can be reduced and the capacity of resisting disturbance can be enhanced, by closed-loop control of load pressure with integral compensation. Through the developed experimental system in the State Key Lab of Fluid Power Transmission and Control, Zhejiang University, China, the static characteristic of the water hydraulic proportional relief valve was tested and output pressure control of the system in Acrylonitrile Butadiene Styrene(ABS) parts molding experiments was also studied. The experiment results show that the dead band and hysteresis of the water hydraulic proportional pressure relief valve are la展开更多
文摘This paper presents an analysis to forecast the loads of an isolated area where the history of load is not available or the history may not represent the realistic demand of electricity. The analysis is done through linear regression and based on the identification of factors on which electrical load growth depends. To determine the identification factors, areas are selected whose histories of load growth rate known and the load growth deciding factors are similar to those of the isolated area. The proposed analysis is applied to an isolated area of Bangladesh, called Swandip where a past history of electrical load demand is not available and also there is no possibility of connecting the area with the main land grid system.
基金supported by the State Grid Science & Technology Project (Grant No.17H300000437)
文摘We propose a restoration strategy using microgrids for restoring power supply to critical loads after an extreme event and thereby enhancing the resilience of the distribution power grid. The limited capacities of distributed generators(DGs) within the microgrids and those of intermittent energy sources such as wind and photovoltaic power are considered. An enhanced strategy model of the distribution network is established for maximizing the power supply to critical loads. Firstly, the importance of the load is quantified by using the analytic hierarchy process(AHP) and the model of the microgrid output is further improved. In the demand response mechanism, an interruptible load is used to suppress the fluctuation in the distributed power output. Secondly, piecewise linearization method is applied to address the power flow constraints. Then, the resilience enhancement model of the distribution network is transformed into a mixed integer quadratic programming problem. The CPLEX solver is adopted to solve the above problem on the MATLAB platform. Finally, the proposed method is verified by applying it to practical scenarios.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2006CB705405)National Natural Science Foundation of China (Grant No. 50775199)Zhejiang Provincial Science and Technology Plan Program of China (Grant No. 2007C21057)
文摘Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savings and injection pressure control can not be .attained based on conventional valve control system. Moreover, the injection water can not be supplied directly by water hydraulic proportional control system. Poor efficiency and control performance are presented by current trial systems, which pressurize injection water by compressed air. In this paper, a novel water hydraulic system is developed applying an accumulator for energy saving. And a new differential pressure control method is proposed by using pressure cylinder and water hydraulic proportional pressure relief valve for back pressure control. Aiming at design of linear controller for injection water pressure regulation, a linear load model is approximately built through computational fluid dynamics(CFD) simulation on two-phase flow cavity filling process with variable temperature and viscosity, and a linear model of pressure control system is built with the load model and linearization of water hydraulic components. According to the simulation, model based feedback is brought forward to compensate the pressure decrease during accumulator discharge and eliminate the derivative element of the system. Meanwhile, the steady-state error can be reduced and the capacity of resisting disturbance can be enhanced, by closed-loop control of load pressure with integral compensation. Through the developed experimental system in the State Key Lab of Fluid Power Transmission and Control, Zhejiang University, China, the static characteristic of the water hydraulic proportional relief valve was tested and output pressure control of the system in Acrylonitrile Butadiene Styrene(ABS) parts molding experiments was also studied. The experiment results show that the dead band and hysteresis of the water hydraulic proportional pressure relief valve are la