Controlled oxidation experiments were performed on Kovar alloy by changing oxidation atmosphere, temperature, and exposure time to produce films with different oxide type and thickness. The results indicated that sing...Controlled oxidation experiments were performed on Kovar alloy by changing oxidation atmosphere, temperature, and exposure time to produce films with different oxide type and thickness. The results indicated that single Fe3O4 and single FeO were respectively obtained when Kovar alloy was oxidized in N2-2.31%H2O-0.95%H2 at 500℃ and in N2-2.31%H2O-0.5%H2 at 1000℃, and all kinetic curves followed linear relation; mixed oxides of FeO and Fe3O4 formed when Kovar was oxidized in N2-2.31%H2O at 1000℃and parabolic kinetics were obeyed. Analysis of metallographic cross section of oxides indicated that oxygen diffusion inward through the oxide scale is responsible for intergranular oxide, which had formed beneath the oxide scales when the oxide products were mixed oxides of FeO and Fe3O4, and which did not occur when the oxide was single FeO or Fe3O4. The oxidation model was also established.展开更多
基金supported by the National Natural Science Foundation of China(No. 50671014).
文摘Controlled oxidation experiments were performed on Kovar alloy by changing oxidation atmosphere, temperature, and exposure time to produce films with different oxide type and thickness. The results indicated that single Fe3O4 and single FeO were respectively obtained when Kovar alloy was oxidized in N2-2.31%H2O-0.95%H2 at 500℃ and in N2-2.31%H2O-0.5%H2 at 1000℃, and all kinetic curves followed linear relation; mixed oxides of FeO and Fe3O4 formed when Kovar was oxidized in N2-2.31%H2O at 1000℃and parabolic kinetics were obeyed. Analysis of metallographic cross section of oxides indicated that oxygen diffusion inward through the oxide scale is responsible for intergranular oxide, which had formed beneath the oxide scales when the oxide products were mixed oxides of FeO and Fe3O4, and which did not occur when the oxide was single FeO or Fe3O4. The oxidation model was also established.
文摘研究了熔封气氛、熔封温度和熔封时间对玻璃与可伐合金封接件的外观、气密性、结合强度、弯曲次数和玻璃沿引线的爬坡高度的影响.结果表明:熔封气氛的影响很大,随着熔封气氛氧化性的增强,玻璃飞溅程度越来越严重.随着熔封时间的延长或者熔封温度的升高,可伐合金表面为单一FeO或单一Fe3O4氧化膜时与玻璃的结合强度缓慢增加且弯曲次数基本保持不变,双层氧化膜(FeO+Fe3O4或Fe3O4+Fe2O3)与玻璃的结合强度虽然较高,但弯曲次数却明显下降.可伐合金表面氧化膜类型与玻璃沿引线的爬坡高度关系不大,随着熔封温度的升高,玻璃沿引线的爬坡高度下降;而随着熔封时间的延长,玻璃沿引线的爬坡高度急剧下降,当降至140μm后逐渐趋于稳定.推荐的优化工艺条件是:熔封气氛为弱还原气氛,熔封温度在980℃左右,熔封时间为20~30 min.