This paper presents a new type of interpolation of Bα spaces,with which a new characterization of Bα spaces by the Jackson means of entire exponential type is given.
We study summing multipliers from Banach spaces of analytic functions on the unit disc of the complex plane to the complex Banach sequence lattices. The domain spaces are abstract variants of the classical Hardy space...We study summing multipliers from Banach spaces of analytic functions on the unit disc of the complex plane to the complex Banach sequence lattices. The domain spaces are abstract variants of the classical Hardy spaces generated by the complex symmetric spaces. Applying interpolation methods, we prove the Hausdorff Young and Hardy-Littlewood type theorems. We show applications of these results to study summing multipliers from the Hardy-Orlicz spaces to the Orlicz sequence lattices. The obtained results extend the well-known results for the Hp spaces.展开更多
We study the well-posedness of the equations with fractional derivative D^αu(t)= Au(t) + f(t) (0 ≤ t ≤ 2π), where A is a closed operator in a Banach space X, 0 〈 α 〈 1 and D^αis the fractional derivat...We study the well-posedness of the equations with fractional derivative D^αu(t)= Au(t) + f(t) (0 ≤ t ≤ 2π), where A is a closed operator in a Banach space X, 0 〈 α 〈 1 and D^αis the fractional derivative in the sense of Weyl. Although this problem is not always well-posed in L^P(0, 2π; X) or periodic continuous function spaces Cper([0, 2π]; X), we show by using the method of sum that it is well-posed in some subspaces of L^P(0, 2π; X) or Cper ([0, 2π]; X).展开更多
This study focuses on vector-valued anisotropic Sobolev-Lions spaces associated with Banach spaces E0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal...This study focuses on vector-valued anisotropic Sobolev-Lions spaces associated with Banach spaces E0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal regular in these spaces in terms of interpolations of spaces E0 and E. In particular, the most regular class of interpolation spaces Eα between E0, E depending on α and the order of space are found and the boundedness of differential operators D^α from this space to Eα-valued Lp,γ spaces is proved. These results are applied to partial differential-operator equations with parameters to obtain conditions that guarantee the maximal Lp,γ regularity and R-positivity uniformly with respect to these parameters.展开更多
The weighted Sobolev-Lions type spaces W pl,γ(Ω; E0, E) = W pl,γ(Ω; E) ∩ Lp,γ (Ω; E0) are studied, where E0, E are two Banach spaces and E0 is continuously and densely embedded on E. A new concept of capa...The weighted Sobolev-Lions type spaces W pl,γ(Ω; E0, E) = W pl,γ(Ω; E) ∩ Lp,γ (Ω; E0) are studied, where E0, E are two Banach spaces and E0 is continuously and densely embedded on E. A new concept of capacity of region Ω ∈ Rn in W pl,γ(; E0, E) is introduced. Several conditions in terms of capacity of region Ω and interpolations of E0 and E are found such that ensure the continuity and compactness of embedding operators. In particular, the most regular class of interpolation spaces Eα between E0 and E, depending of α and l, are found such that mixed differential operators Dα are bounded and compact from W pl,γ(Ω; E0, E) to Eα-valued Lp,γ spaces. In applications, the maximal regularity for differential-operator equations with parameters are studied.展开更多
Necessary and sufficient conditions for compactness of sets in Banach space valued Besov class Bp,q s(Ω;E) is derived.The embedding theorems in Besov-Lions type spaces B l,s p,q(Ω;E0,E) are studied,where E0,E are tw...Necessary and sufficient conditions for compactness of sets in Banach space valued Besov class Bp,q s(Ω;E) is derived.The embedding theorems in Besov-Lions type spaces B l,s p,q(Ω;E0,E) are studied,where E0,E are two Banach spaces and E 0 E.The most regular class of interpolation space E α,between E 0 and E are found such that the mixed differential operator D α is bounded and compact from B p,q l,s (Ω;E 0,E) to B p,q s (Ω;E α) and Ehrling-Nirenberg-Gagliardo type sharp estimates established.By using these results the separability of differential operators with variable coefficients and the maximal B-regularity of parabolic Cauchy problem are obtained.In applications,the infinite systems of the elliptic partial differential equations and parabolic Cauchy problems are studied.展开更多
文摘This paper presents a new type of interpolation of Bα spaces,with which a new characterization of Bα spaces by the Jackson means of entire exponential type is given.
基金Committee of Scientific Research,Poland,grant N201 385034
文摘We study summing multipliers from Banach spaces of analytic functions on the unit disc of the complex plane to the complex Banach sequence lattices. The domain spaces are abstract variants of the classical Hardy spaces generated by the complex symmetric spaces. Applying interpolation methods, we prove the Hausdorff Young and Hardy-Littlewood type theorems. We show applications of these results to study summing multipliers from the Hardy-Orlicz spaces to the Orlicz sequence lattices. The obtained results extend the well-known results for the Hp spaces.
基金Supported by National Natural Science Foundation of China (Grant No.10731020)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.200800030059)
文摘We study the well-posedness of the equations with fractional derivative D^αu(t)= Au(t) + f(t) (0 ≤ t ≤ 2π), where A is a closed operator in a Banach space X, 0 〈 α 〈 1 and D^αis the fractional derivative in the sense of Weyl. Although this problem is not always well-posed in L^P(0, 2π; X) or periodic continuous function spaces Cper([0, 2π]; X), we show by using the method of sum that it is well-posed in some subspaces of L^P(0, 2π; X) or Cper ([0, 2π]; X).
基金This work is supported by the grant of Istanbul University (Project UDP-227/18022004)
文摘This study focuses on vector-valued anisotropic Sobolev-Lions spaces associated with Banach spaces E0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal regular in these spaces in terms of interpolations of spaces E0 and E. In particular, the most regular class of interpolation spaces Eα between E0, E depending on α and the order of space are found and the boundedness of differential operators D^α from this space to Eα-valued Lp,γ spaces is proved. These results are applied to partial differential-operator equations with parameters to obtain conditions that guarantee the maximal Lp,γ regularity and R-positivity uniformly with respect to these parameters.
文摘The weighted Sobolev-Lions type spaces W pl,γ(Ω; E0, E) = W pl,γ(Ω; E) ∩ Lp,γ (Ω; E0) are studied, where E0, E are two Banach spaces and E0 is continuously and densely embedded on E. A new concept of capacity of region Ω ∈ Rn in W pl,γ(; E0, E) is introduced. Several conditions in terms of capacity of region Ω and interpolations of E0 and E are found such that ensure the continuity and compactness of embedding operators. In particular, the most regular class of interpolation spaces Eα between E0 and E, depending of α and l, are found such that mixed differential operators Dα are bounded and compact from W pl,γ(Ω; E0, E) to Eα-valued Lp,γ spaces. In applications, the maximal regularity for differential-operator equations with parameters are studied.
文摘Necessary and sufficient conditions for compactness of sets in Banach space valued Besov class Bp,q s(Ω;E) is derived.The embedding theorems in Besov-Lions type spaces B l,s p,q(Ω;E0,E) are studied,where E0,E are two Banach spaces and E 0 E.The most regular class of interpolation space E α,between E 0 and E are found such that the mixed differential operator D α is bounded and compact from B p,q l,s (Ω;E 0,E) to B p,q s (Ω;E α) and Ehrling-Nirenberg-Gagliardo type sharp estimates established.By using these results the separability of differential operators with variable coefficients and the maximal B-regularity of parabolic Cauchy problem are obtained.In applications,the infinite systems of the elliptic partial differential equations and parabolic Cauchy problems are studied.