摘要
借助正整数α阶光滑模引入Holder范数,由此定义一种K-泛函并用K方法构造出一种Besov空间,用其对一类推广的三角插值算子的正、逆定理进行了刻画。
A generalized K-functional is defined by Holder norm which is introduced by positive integer norm of second-order smoothness,a Besov space is constructed by K-method. Some theorems and its converse theorems of generalized triangle interpolation operator are described by this Besov space.
出处
《宝鸡文理学院学报(自然科学版)》
CAS
2003年第3期162-165,共4页
Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金
陕西省教育厅专项基金(00JK110)
关键词
BESOV空间
内插空间
插值算子
有界线性算子
Besov space interpolation space
interpolation operator
bounded linear operator