期刊文献+

Well-Posedness of Equations with Fractional Derivative via the Method of Sum

Well-Posedness of Equations with Fractional Derivative via the Method of Sum
原文传递
导出
摘要 We study the well-posedness of the equations with fractional derivative D^αu(t)= Au(t) + f(t) (0 ≤ t ≤ 2π), where A is a closed operator in a Banach space X, 0 〈 α 〈 1 and D^αis the fractional derivative in the sense of Weyl. Although this problem is not always well-posed in L^P(0, 2π; X) or periodic continuous function spaces Cper([0, 2π]; X), we show by using the method of sum that it is well-posed in some subspaces of L^P(0, 2π; X) or Cper ([0, 2π]; X). We study the well-posedness of the equations with fractional derivative D^αu(t)= Au(t) + f(t) (0 ≤ t ≤ 2π), where A is a closed operator in a Banach space X, 0 〈 α 〈 1 and D^αis the fractional derivative in the sense of Weyl. Although this problem is not always well-posed in L^P(0, 2π; X) or periodic continuous function spaces Cper([0, 2π]; X), we show by using the method of sum that it is well-posed in some subspaces of L^P(0, 2π; X) or Cper ([0, 2π]; X).
作者 Shang Quan BU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第1期37-44,共8页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant No.10731020) the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.200800030059)
关键词 WELL-POSEDNESS fractional derivative the method of sum real interpolation spaces fractional Sobolev spaces Well-posedness, fractional derivative, the method of sum, real interpolation spaces, fractional Sobolev spaces
  • 相关文献

参考文献12

  • 1Bu, S.: Well-posedness of equations with fractional derivative. Acta Mathematica Sinica, English Series, 26(7), 1223-1232 (2010). 被引量:1
  • 2Da Prato, G., Grisvard, P.: Sommes d'op6rateurs lin6aires et 6quations diff6rentielles op6rationnelles. J. Math. Pures Appl., 54, 305-387 (1975). 被引量:1
  • 3Arendt, W., Bu, S.: Sums of bisectorial operators and applications. Integral Equations Operator Theory, 52, 299-321 (2005). 被引量:1
  • 4Clement, Ph., Priiss, J.: An operator-valued transference principle and maximal regularity on vector-valued Lp-spaces. In: Evolution Equations and Their Applications in Physics and Life Sciences, Lumer, Weis eds., Marcel Dekker, 2000, 67-87. 被引量:1
  • 5C16ment, Ph., Gripenberg, G., Londen, S.-O.: Schauder estiamtes for equations with fractional derivatives. Trans. Amer. Math. Soc., 352, 2239-2260 (2000). 被引量:1
  • 6Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z., 240, 311-343 (2002). 被引量:1
  • 7Martinez Carracedo, C., Sanz Alix, M.: The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies 187, Elsevier, 2001. 被引量:1
  • 8Zygmund, A.: Trigonometric Series, Vol. II, Cambridge University Press, Cambridge, 1959. 被引量:1
  • 9Arendt, W., Bu, S.: Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc., 47, 15-33 (2004). 被引量:1
  • 10Schmeisser, H. J., Triebel, H.: Topics in Fourier Analysis and Function Spaces, Wiley, Chichester, 1987. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部