A variant constrained genetic algorithm (VCGA) for effective tracking of conditional nonlinear optimal perturbations (CNOPs) is presented. Compared with traditional constraint handling methods, the treatment of th...A variant constrained genetic algorithm (VCGA) for effective tracking of conditional nonlinear optimal perturbations (CNOPs) is presented. Compared with traditional constraint handling methods, the treatment of the constraint condition in VCGA is relatively easy to implement. Moreover, it does not require adjustments to indefinite pararneters. Using a hybrid crossover operator and the newly developed multi-ply mutation operator, VCGA improves the performance of GAs. To demonstrate the capability of VCGA to catch CNOPS in non-smooth cases, a partial differential equation, which has "on off" switches in its forcing term, is employed as the nonlinear model. To search global CNOPs of the nonlinear model, numerical experiments using VCGA, the traditional gradient descent algorithm based on the adjoint method (ADJ), and a GA using tournament selection operation and the niching technique (GA-DEB) were performed. The results with various initial reference states showed that, in smooth cases, all three optimization methods are able to catch global CNOPs. Nevertheless, in non-smooth situations, a large proportion of CNOPs captured by the ADJ are local. Compared with ADJ, the performance of GA-DEB shows considerable improvement, but it is far below VCGA. Further, the impacts of population sizes on both VCGA and GA-DEB were investigated. The results were used to estimate the computation time of ~CGA and GA-DEB in obtaining CNOPs. The computational costs for VCGA, GA-DEB and ADJ to catch CNOPs of the nonlinear model are also compared.展开更多
Cervical cancer is a global public health subject as it affects women in the reproductive ages,and accounts for the second largest burden among cancer patients worldwide with an unforgiving 50%mortality rate.Relativel...Cervical cancer is a global public health subject as it affects women in the reproductive ages,and accounts for the second largest burden among cancer patients worldwide with an unforgiving 50%mortality rate.Relatively scant awareness and limited access to effective diagnosis have led to this enormous disease burden,calling for point-of-care,minimally invasive diagnosis methods.Here,an end-to-end quantitative unified pipeline for diagnosis has been developed,beginning with identification of optimal biomarkers,concurrent design of toehold switch sensors,and finally simulation of the designed diagnostic circuits to assess performance.Using miRNA expression data in the public domain,we identified miR-21-5p and miR-20a-5p as blood-based miRNA biomarkers specific to early-stage cervical cancer employing a multi-tier algorithmic screening.Synthetic riboregulators called toehold switches specific to the biomarker panel were then designed.To predict the dynamic range of toehold switches for use in genetic circuits as biosensors,we used a generic grammar of these switches,and built a neural network model of dynamic range using thermodynamic features derived from mRNA secondary structure and interaction.Second-generation toehold switches were used to overcome the design challenges associated with miRNA biomarkers.The resultant model yielded an adj.R^(2)~0.71,outperforming earlier models of toehold-switch dynamic range.Reaction kinetics modelling was performed to predict the sensitivity of the second-generation toehold switches to the miRNA biomarkers.Simulations showed a linear response between 10 nM and 100 nM before saturation.Our study demonstrates an end-to-end computational workflow for the efficient design of genetic circuits geared towards the effective detection of unique genomic/nucleic-acid signatures.The approach has the potential to replace iterative experimental trial and error,and focus time,money,and efforts.All software including the toehold grammar parser,neural network model and reaction kinetics simulati展开更多
The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear o...The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear optimal perturbation (CNOP) method. Usually, the CNOP method is implemented with the help of a gradient descent algorithm based on the adjoint method, which is named the ADJ-CNOP. However, with the increasing improvement of actual prediction models, more and more physical processes are taken into consideration in models in the form of parameterization, thus giving rise to the on–off switch problem, which tremendously affects the effectiveness of the conventional gradient descent algorithm based on the ad- joint method. In this study, we attempted to apply a genetic algorithm (GA) to the CNOP method, named GA-CNOP, to solve the predictability problems involving on–off switches. As the precision of the filtering method depends uniquely on the division of the constraint region, its results were taken as benchmarks, and a series of comparisons between the ADJ-CNOP and the GA-CNOP were performed for the modified Lorenz equation. Results show that the GA-CNOP can always determine the accurate lower bound of maximum predictable time, even in non-smooth cases, while the ADJ-CNOP, owing to the effect of on–off switches, often yields the incorrect lower bound of maximum predictable time. Therefore, in non-smooth cases, using GAs to solve predictability problems is more effective than using the conventional optimization algorithm based on gradients, as long as genetic operators in GAs are properly configured.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.40975063)the National Natural Science Foundation of China(Grant No.41331174)
文摘A variant constrained genetic algorithm (VCGA) for effective tracking of conditional nonlinear optimal perturbations (CNOPs) is presented. Compared with traditional constraint handling methods, the treatment of the constraint condition in VCGA is relatively easy to implement. Moreover, it does not require adjustments to indefinite pararneters. Using a hybrid crossover operator and the newly developed multi-ply mutation operator, VCGA improves the performance of GAs. To demonstrate the capability of VCGA to catch CNOPS in non-smooth cases, a partial differential equation, which has "on off" switches in its forcing term, is employed as the nonlinear model. To search global CNOPs of the nonlinear model, numerical experiments using VCGA, the traditional gradient descent algorithm based on the adjoint method (ADJ), and a GA using tournament selection operation and the niching technique (GA-DEB) were performed. The results with various initial reference states showed that, in smooth cases, all three optimization methods are able to catch global CNOPs. Nevertheless, in non-smooth situations, a large proportion of CNOPs captured by the ADJ are local. Compared with ADJ, the performance of GA-DEB shows considerable improvement, but it is far below VCGA. Further, the impacts of population sizes on both VCGA and GA-DEB were investigated. The results were used to estimate the computation time of ~CGA and GA-DEB in obtaining CNOPs. The computational costs for VCGA, GA-DEB and ADJ to catch CNOPs of the nonlinear model are also compared.
文摘Cervical cancer is a global public health subject as it affects women in the reproductive ages,and accounts for the second largest burden among cancer patients worldwide with an unforgiving 50%mortality rate.Relatively scant awareness and limited access to effective diagnosis have led to this enormous disease burden,calling for point-of-care,minimally invasive diagnosis methods.Here,an end-to-end quantitative unified pipeline for diagnosis has been developed,beginning with identification of optimal biomarkers,concurrent design of toehold switch sensors,and finally simulation of the designed diagnostic circuits to assess performance.Using miRNA expression data in the public domain,we identified miR-21-5p and miR-20a-5p as blood-based miRNA biomarkers specific to early-stage cervical cancer employing a multi-tier algorithmic screening.Synthetic riboregulators called toehold switches specific to the biomarker panel were then designed.To predict the dynamic range of toehold switches for use in genetic circuits as biosensors,we used a generic grammar of these switches,and built a neural network model of dynamic range using thermodynamic features derived from mRNA secondary structure and interaction.Second-generation toehold switches were used to overcome the design challenges associated with miRNA biomarkers.The resultant model yielded an adj.R^(2)~0.71,outperforming earlier models of toehold-switch dynamic range.Reaction kinetics modelling was performed to predict the sensitivity of the second-generation toehold switches to the miRNA biomarkers.Simulations showed a linear response between 10 nM and 100 nM before saturation.Our study demonstrates an end-to-end computational workflow for the efficient design of genetic circuits geared towards the effective detection of unique genomic/nucleic-acid signatures.The approach has the potential to replace iterative experimental trial and error,and focus time,money,and efforts.All software including the toehold grammar parser,neural network model and reaction kinetics simulati
基金the National Basic Research Program of China,the National Natural Science Foundation of China,the Fundamental Research Funds for the Central Universities
基金supported bythe National Natural Science Foundation of China(Grant Nos40975063 and 40830955)
文摘The lower bound of maximum predictable time can be formulated into a constrained nonlinear opti- mization problem, and the traditional solutions to this problem are the filtering method and the conditional nonlinear optimal perturbation (CNOP) method. Usually, the CNOP method is implemented with the help of a gradient descent algorithm based on the adjoint method, which is named the ADJ-CNOP. However, with the increasing improvement of actual prediction models, more and more physical processes are taken into consideration in models in the form of parameterization, thus giving rise to the on–off switch problem, which tremendously affects the effectiveness of the conventional gradient descent algorithm based on the ad- joint method. In this study, we attempted to apply a genetic algorithm (GA) to the CNOP method, named GA-CNOP, to solve the predictability problems involving on–off switches. As the precision of the filtering method depends uniquely on the division of the constraint region, its results were taken as benchmarks, and a series of comparisons between the ADJ-CNOP and the GA-CNOP were performed for the modified Lorenz equation. Results show that the GA-CNOP can always determine the accurate lower bound of maximum predictable time, even in non-smooth cases, while the ADJ-CNOP, owing to the effect of on–off switches, often yields the incorrect lower bound of maximum predictable time. Therefore, in non-smooth cases, using GAs to solve predictability problems is more effective than using the conventional optimization algorithm based on gradients, as long as genetic operators in GAs are properly configured.