The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in ...The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective vis-cosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of therate-of-strain tensor and the fiber orientation state ; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local stream-lines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of ef-fective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds numberbut on the converging channel angle.展开更多
The hydrodynamics of the capillary flow of a viscous-plastic liquid in cylindrical rectilinear pores is considered, as a result of which the structural velocity distribution over the pore cross section is obtained. An...The hydrodynamics of the capillary flow of a viscous-plastic liquid in cylindrical rectilinear pores is considered, as a result of which the structural velocity distribution over the pore cross section is obtained. Analytical solutions are proposed for the equations of hydraulic diffusion and nonlinear filtration for a non-Newtonian fluid in a cylindrical porous medium. It is noted that when a non-Newtonian fluid flows in a porous medium, the filtration equations take a nonlinear form due to the effective viscosity, shear, and yield stresses taken into account in its structure. The proposed solutions make it possible to evaluate the state of the porous medium and its main parameters (permeability, hydraulic diffusion, and effective viscosity coefficients). The obtained solutions are compared with existing experimental data for non-Newtonian oils.展开更多
文摘The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective vis-cosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of therate-of-strain tensor and the fiber orientation state ; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local stream-lines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of ef-fective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds numberbut on the converging channel angle.
基金the National Natural Science Foundation of China(Grant Nos.12032010 and 12272179)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0349)the Project of Jiangsu Science and Technology Plan(Grant No.BE2022821).
文摘The hydrodynamics of the capillary flow of a viscous-plastic liquid in cylindrical rectilinear pores is considered, as a result of which the structural velocity distribution over the pore cross section is obtained. Analytical solutions are proposed for the equations of hydraulic diffusion and nonlinear filtration for a non-Newtonian fluid in a cylindrical porous medium. It is noted that when a non-Newtonian fluid flows in a porous medium, the filtration equations take a nonlinear form due to the effective viscosity, shear, and yield stresses taken into account in its structure. The proposed solutions make it possible to evaluate the state of the porous medium and its main parameters (permeability, hydraulic diffusion, and effective viscosity coefficients). The obtained solutions are compared with existing experimental data for non-Newtonian oils.