As a powerful non-destructive and label-free detection technology,surface-enhanced Raman scattering(SERS)has been widely used in environmental-pollutant detection,biological-tissue sensing,molecular fingerprint analys...As a powerful non-destructive and label-free detection technology,surface-enhanced Raman scattering(SERS)has been widely used in environmental-pollutant detection,biological-tissue sensing,molecular fingerprint analysis and so on.Different from the traditional SERS substrates represented by noble metals and semiconductors,herein,we report a new highly sensitive SERS substrate material with high stability,biocompatibility,and low cost,namely nucleusfree two-dimensional electron gas(2DEG)Ti3C2 monolayer nanosheets.The highly crystalline monolayer Ti3C2 nanosheets with clean surface are synthesized by an improved chemical exfoliation and microwave heating method.The unique structure of nucleus-free-2DEG in Ti3C2 monolayer provides an ideal transport channel without nuclear scattering,which makes the highly crystalline monolayer Ti3C2 nanosheets achieve a Raman enhanced factor of 3.82×108 and a 10-11 level detection limit for typical environmental pollutants such as azo dyes,trichlorophenol,and bisphenol A.Singlemolecule imaging is also realized on the surface of the Ti3C2 monolayers,which may be the first time that approximate single-molecule imaging has been achieved on a non-noblemetal SERS substrates.Preliminary toxicological experiments show that the cytotoxicity of this material is very low.Considering the facile synthesis,high biocompatibility,low cost and high chemical stability of carbide nanosheets,these Ti3C2 monolayer nanosheets show significant promise for the design and fabrication of flexible SERS substrates for the sensing of trace substances with ultrahigh sensitivity.展开更多
On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic fi...On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic field were performed, taking into account the speed of its angular rotation, the parameters of density and temperature, the chemical composition, the ionization potential, the dielectric constant and the percentage of the main chemical compounds of the mantle substance.展开更多
The electron correlation correction is known as the key that dominates the quantitativeaccuracy of the computational quantum chemistry. To search for a new way of lesstime-consuming to estimate the electron correlatio...The electron correlation correction is known as the key that dominates the quantitativeaccuracy of the computational quantum chemistry. To search for a new way of lesstime-consuming to estimate the electron correlation energies of large-size molecules,展开更多
For the recent twenty years, the ab initio method, being in the leading position in thecomputational quantum chemistry, has made great and convincing success in theprediction of molecular geometries and properties of ...For the recent twenty years, the ab initio method, being in the leading position in thecomputational quantum chemistry, has made great and convincing success in theprediction of molecular geometries and properties of one-electronic behavior. On theother hand,the energy accuracy it gives is not generally adequate because the molecularorbital theory excessively emphasizes the independence of the motion of the electrons展开更多
Zeolitic Imidazolate Framework-8(ZIF-8)material was prepared by chemical precipitation method.The microstructure and physical properties of the as-prepared samples were characterized by XRD,BET,FESEM and UV spectropho...Zeolitic Imidazolate Framework-8(ZIF-8)material was prepared by chemical precipitation method.The microstructure and physical properties of the as-prepared samples were characterized by XRD,BET,FESEM and UV spectrophotometer.The self-made four-channel measurement device was used to test the gas sensitivity of ZIF-8 material toward ethanol gas under photo-thermal synergistic excitation.The results showed that the sample was typical ZIF-8(E_(g)=4.96 eV)with a regular dodecahedron shape and the specific surface is up to 1793 m^(2)/g.The as-prepared ZIF-8 has a gas response value of 55.04 to 100 ppm ethanol at 75℃ and it shows good gas sensing selectivity and repeated stability.The excellent gas sensitivity can be attributed to the increase of free electron concentration in the ZIF-8 conduction band by photo-thermal synergistic excitation,and the large specific surface area of ZIF-8 material provides more active sites for gas-solid surface reaction.The reaction mechanism of ZIF-8 material under multi-field excitation was also discussed.展开更多
The accurate measurement of concentration is the basis for determining emission sources and sinks of nitrous oxide (N2O). The detection of N2O showed that the presence of carbon dioxide (CO2) biased the N2O respon...The accurate measurement of concentration is the basis for determining emission sources and sinks of nitrous oxide (N2O). The detection of N2O showed that the presence of carbon dioxide (CO2) biased the N2O response when pure nitrogen (N2) was used as a carrier gas for gas chromatography (GC) equipped with an electron capture detector (GC-ECD). In this study, laboratory experiments were carried out to explore how the presence of CO2 interferes with the accurate determination of N2O. The aims were to address the extent of the influence to try and explain the underlying mechanism, and to uncover technical options for solving the problem. Three GC carrier gases are discussed: pure nitrogen (DN); a mixture of argon and methane (AM); and a high concentration CO2, which was introduced into the ECD cell with a low flow rate based on DN (DN-CO2). The results show that when DN was used, the existence of CO2 in the ECD cell greatly enhanced the response of N2O, which increased with CO2 content and remained constant when the content reached a limit. Comparisons between the three methods show that the DN method is defective for the accurate determination of N2O. The bias is caused by different electron capture mechanisms of CO2 and N2O and depends heavily on the detector temperature. New GC carrier gas types with make-up gases that can remove the CO2-induced influence, such as the DN-CO2 and DN-CH4 methods reported in this paper, are recommended for the accurate measurement of N2O.展开更多
基金support from the Science Foundation of Chinese Academy of Inspection and Quarantine(2019JK004)the National Key Research and Development Program of China(2017YFF0210003)the high performance computing center of Qufu Normal University。
文摘As a powerful non-destructive and label-free detection technology,surface-enhanced Raman scattering(SERS)has been widely used in environmental-pollutant detection,biological-tissue sensing,molecular fingerprint analysis and so on.Different from the traditional SERS substrates represented by noble metals and semiconductors,herein,we report a new highly sensitive SERS substrate material with high stability,biocompatibility,and low cost,namely nucleusfree two-dimensional electron gas(2DEG)Ti3C2 monolayer nanosheets.The highly crystalline monolayer Ti3C2 nanosheets with clean surface are synthesized by an improved chemical exfoliation and microwave heating method.The unique structure of nucleus-free-2DEG in Ti3C2 monolayer provides an ideal transport channel without nuclear scattering,which makes the highly crystalline monolayer Ti3C2 nanosheets achieve a Raman enhanced factor of 3.82×108 and a 10-11 level detection limit for typical environmental pollutants such as azo dyes,trichlorophenol,and bisphenol A.Singlemolecule imaging is also realized on the surface of the Ti3C2 monolayers,which may be the first time that approximate single-molecule imaging has been achieved on a non-noblemetal SERS substrates.Preliminary toxicological experiments show that the cytotoxicity of this material is very low.Considering the facile synthesis,high biocompatibility,low cost and high chemical stability of carbide nanosheets,these Ti3C2 monolayer nanosheets show significant promise for the design and fabrication of flexible SERS substrates for the sensing of trace substances with ultrahigh sensitivity.
文摘On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic field were performed, taking into account the speed of its angular rotation, the parameters of density and temperature, the chemical composition, the ionization potential, the dielectric constant and the percentage of the main chemical compounds of the mantle substance.
基金Project supported by the National Natural Science Foundation of Chinathe Special Science Foundation of the State Education Commission of China.
文摘The electron correlation correction is known as the key that dominates the quantitativeaccuracy of the computational quantum chemistry. To search for a new way of lesstime-consuming to estimate the electron correlation energies of large-size molecules,
基金National Natural Science Foundation of ChinaScience Foundation of Tsinghua University.
文摘For the recent twenty years, the ab initio method, being in the leading position in thecomputational quantum chemistry, has made great and convincing success in theprediction of molecular geometries and properties of one-electronic behavior. On theother hand,the energy accuracy it gives is not generally adequate because the molecularorbital theory excessively emphasizes the independence of the motion of the electrons
基金supported by the National Natural Science Foundation of China(No.51864028)the Yunnan Province Science and Technology Major Project for Materials Genetic Engineering of Rare and Precious Metal(No.202002AB080001)+2 种基金the Yunnan Province Funds for Distinguished Young Scientists,(No.2019FJ005)the Science Research Foundation of Yunnan Provincial Education Department(No.2022J0441)the Sichuan Science and Technology Program(No.22QYCX0097)。
文摘Zeolitic Imidazolate Framework-8(ZIF-8)material was prepared by chemical precipitation method.The microstructure and physical properties of the as-prepared samples were characterized by XRD,BET,FESEM and UV spectrophotometer.The self-made four-channel measurement device was used to test the gas sensitivity of ZIF-8 material toward ethanol gas under photo-thermal synergistic excitation.The results showed that the sample was typical ZIF-8(E_(g)=4.96 eV)with a regular dodecahedron shape and the specific surface is up to 1793 m^(2)/g.The as-prepared ZIF-8 has a gas response value of 55.04 to 100 ppm ethanol at 75℃ and it shows good gas sensing selectivity and repeated stability.The excellent gas sensitivity can be attributed to the increase of free electron concentration in the ZIF-8 conduction band by photo-thermal synergistic excitation,and the large specific surface area of ZIF-8 material provides more active sites for gas-solid surface reaction.The reaction mechanism of ZIF-8 material under multi-field excitation was also discussed.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-204)the National Basic Research Program of China (No.2007CB407303)
文摘The accurate measurement of concentration is the basis for determining emission sources and sinks of nitrous oxide (N2O). The detection of N2O showed that the presence of carbon dioxide (CO2) biased the N2O response when pure nitrogen (N2) was used as a carrier gas for gas chromatography (GC) equipped with an electron capture detector (GC-ECD). In this study, laboratory experiments were carried out to explore how the presence of CO2 interferes with the accurate determination of N2O. The aims were to address the extent of the influence to try and explain the underlying mechanism, and to uncover technical options for solving the problem. Three GC carrier gases are discussed: pure nitrogen (DN); a mixture of argon and methane (AM); and a high concentration CO2, which was introduced into the ECD cell with a low flow rate based on DN (DN-CO2). The results show that when DN was used, the existence of CO2 in the ECD cell greatly enhanced the response of N2O, which increased with CO2 content and remained constant when the content reached a limit. Comparisons between the three methods show that the DN method is defective for the accurate determination of N2O. The bias is caused by different electron capture mechanisms of CO2 and N2O and depends heavily on the detector temperature. New GC carrier gas types with make-up gases that can remove the CO2-induced influence, such as the DN-CO2 and DN-CH4 methods reported in this paper, are recommended for the accurate measurement of N2O.