In this paper we characterize commuting dual Toeplitz operators with harmonic symbols on the orthogonal complement of the Dirichlet space in the Sobolev space. We also obtain the sufficient and necessary conditions fo...In this paper we characterize commuting dual Toeplitz operators with harmonic symbols on the orthogonal complement of the Dirichlet space in the Sobolev space. We also obtain the sufficient and necessary conditions for the product of two dual Toeplitz operators with harmonic symbols to be a finite rank perturbation of a dual Toeplitz operator.展开更多
In this paper we investigate some algebra properties of dual Toeplitz operators on the orthogonal complement of the Dirichlet space in the Sobolev space. We completely characterize commuting dual Toeplitz operators wi...In this paper we investigate some algebra properties of dual Toeplitz operators on the orthogonal complement of the Dirichlet space in the Sobolev space. We completely characterize commuting dual Toeplitz operators with harmonic symbols, and show that a dual Toeplitz operator commutes with a nonconstant analytic dual Toeplitz operator if and only if its symbol is analytic. We also obtain the sufficient and necessary conditions on the harmonic symbols for SφSφψ= Sφψ.展开更多
Dual Toeplitz operators on the Hardy space of the unit circle are anti-unitarily equivalent to Toeplitz operators. In higher dimensions, for instance on the unit sphere, dual Toeplitz operators might behave quite diff...Dual Toeplitz operators on the Hardy space of the unit circle are anti-unitarily equivalent to Toeplitz operators. In higher dimensions, for instance on the unit sphere, dual Toeplitz operators might behave quite differently and, therefore, seem to be a worth studying new class of Toeplitz-type operators. The purpose of this paper is to introduce and start a systematic investigation of dual Toeplitz operators on the orthogonal complement of the Hardy space of the unit sphere in Cn . In particular, we establish a corresponding spectral inclusion theorem and a Brown-Halmos type theorem. On the other hand, we characterize commuting dual Toeplitz operators as well as normal and quasinormal ones.展开更多
In this paper, we study the commutativity of dual Toeplitz operators on weighted Bergman spaces of the unit ball. We obtain the necessary and sufficient conditions for the commutativity, essential commutativity and es...In this paper, we study the commutativity of dual Toeplitz operators on weighted Bergman spaces of the unit ball. We obtain the necessary and sufficient conditions for the commutativity, essential commutativity and essential semi-commutativity of dual Toeplitz operator on the weighted Bergman spaces of the unit ball.展开更多
In this paper,we prove the dual Toeplitz algebra I(C(D^-n))contains the ideal к of compact operators as its semicommutator ideal,and study its algebraic structure.We also get some results about spectrum of dual T...In this paper,we prove the dual Toeplitz algebra I(C(D^-n))contains the ideal к of compact operators as its semicommutator ideal,and study its algebraic structure.We also get some results about spectrum of dual Toeplitz operators.展开更多
In this paper, we study some algebraic and spectral properties of dual Toeplitz operators on the orthogonal complement of the harmonic Dirichlet space of the unit disk.
In this paper, we characterize the symbols for (semi-)commuting dual Toeplitz operators on the orthogonal complement of the harmonic Dirichlet space. We show that for φ ,ψ ∈ W1, ∞, SφSψ = SψSφ on (Dh)⊥ if...In this paper, we characterize the symbols for (semi-)commuting dual Toeplitz operators on the orthogonal complement of the harmonic Dirichlet space. We show that for φ ,ψ ∈ W1, ∞, SφSψ = SψSφ on (Dh)⊥ if and only if φ and ψ satisfy one of the following conditions: (1) Both φ and ψ are harmonic functions; (2) There exist complex constants α and β, not both O, such that φ = αφ+β.展开更多
文摘In this paper we characterize commuting dual Toeplitz operators with harmonic symbols on the orthogonal complement of the Dirichlet space in the Sobolev space. We also obtain the sufficient and necessary conditions for the product of two dual Toeplitz operators with harmonic symbols to be a finite rank perturbation of a dual Toeplitz operator.
文摘In this paper we investigate some algebra properties of dual Toeplitz operators on the orthogonal complement of the Dirichlet space in the Sobolev space. We completely characterize commuting dual Toeplitz operators with harmonic symbols, and show that a dual Toeplitz operator commutes with a nonconstant analytic dual Toeplitz operator if and only if its symbol is analytic. We also obtain the sufficient and necessary conditions on the harmonic symbols for SφSφψ= Sφψ.
基金Supported by King Saud University, Deanship of Scientific Research, College of Science Research Center
文摘Dual Toeplitz operators on the Hardy space of the unit circle are anti-unitarily equivalent to Toeplitz operators. In higher dimensions, for instance on the unit sphere, dual Toeplitz operators might behave quite differently and, therefore, seem to be a worth studying new class of Toeplitz-type operators. The purpose of this paper is to introduce and start a systematic investigation of dual Toeplitz operators on the orthogonal complement of the Hardy space of the unit sphere in Cn . In particular, we establish a corresponding spectral inclusion theorem and a Brown-Halmos type theorem. On the other hand, we characterize commuting dual Toeplitz operators as well as normal and quasinormal ones.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10671028, 10971020)
文摘In this paper, we study the commutativity of dual Toeplitz operators on weighted Bergman spaces of the unit ball. We obtain the necessary and sufficient conditions for the commutativity, essential commutativity and essential semi-commutativity of dual Toeplitz operator on the weighted Bergman spaces of the unit ball.
基金Foundation item: the National Natural Science Foundation of China (No. 10771064)
文摘In this paper,we prove the dual Toeplitz algebra I(C(D^-n))contains the ideal к of compact operators as its semicommutator ideal,and study its algebraic structure.We also get some results about spectrum of dual Toeplitz operators.
基金Supported by NSFC(Grant Nos.11471113,11271332 and 11431011)Zhejiang Provincial SFC(Grant Nos.LY14A010013 and LY13A010021)the Fundamental Research Funds for the Central Universities
文摘In this paper, we study some algebraic and spectral properties of dual Toeplitz operators on the orthogonal complement of the harmonic Dirichlet space of the unit disk.
基金Supported by NSFC(Grant Nos.11271059,11271332,11431011,11301047)NSF of Zhejiang Province(Grant Nos.LY14A010013,LY14A010021)Higher School Foundation of Inner Mongolia of China(Grant No.NJZY13298)
文摘In this paper, we characterize the symbols for (semi-)commuting dual Toeplitz operators on the orthogonal complement of the harmonic Dirichlet space. We show that for φ ,ψ ∈ W1, ∞, SφSψ = SψSφ on (Dh)⊥ if and only if φ and ψ satisfy one of the following conditions: (1) Both φ and ψ are harmonic functions; (2) There exist complex constants α and β, not both O, such that φ = αφ+β.