为研究野生与养殖小黄鱼群体的遗传多样性,基于mtDNA Cytb基因和D-loop控制区对舟山嵊泗海域(SS)和象山三门口海域(SMK)2个小黄鱼野生群体和1个养殖群体(YZ)的遗传结构与遗传分化等进行比较分析。序列分析结果显示,Cytb基因序列为841 bp...为研究野生与养殖小黄鱼群体的遗传多样性,基于mtDNA Cytb基因和D-loop控制区对舟山嵊泗海域(SS)和象山三门口海域(SMK)2个小黄鱼野生群体和1个养殖群体(YZ)的遗传结构与遗传分化等进行比较分析。序列分析结果显示,Cytb基因序列为841 bp,其A+T含量(50.2%)与C+G含量(49.8%)相似;D-loop区序列为629~635 bp,A+T含量(58.9%)远高于C+G含量(41.1%)。SS、SMK和YZ群体Cytb基因的单倍型数分别为26、27和12,SS和SMK群体共享2个单倍型(Hap1和Hap13),SMK和YZ群体共享1个单倍型(Hap41);SS、SMK和YZ群体D-loop区的单倍型数分别为27、30和10,SS和SMK群体共享1个单倍型(Hap4)。多样性分析结果显示,3个群体均属于高单倍型多样性(H_(d)>0.5),其中,SS和SMK群体单倍型多样性和核苷酸多样性高于YZ群体,表明野生群体多样性略高于养殖群体。遗传分化指数显示,2个小黄鱼野生群体间的分化程度极小,而养殖群体与野生群体间存在中度分化。遗传分化指数和AMOVA分析结果表明,群体内个体的变异是遗传变异的主要来源。Cytb基因和D-loop区序列中性检验结果中SS和SMK群体的Tajima s D值和Fu and Li s值均为负数,且Cytb基因的Tajima s D值和Fu and Li s值显著(P<0.05)偏离中性,表明2个野生群体有可能经历过群体扩张。单倍型系统发育树显示,SS、SMK和YZ群体均未表现出明显的地理聚集,群体间互有交叉,表明3个群体间的分化尚不明显。展开更多
Altered three-dimensional architecture of chromatin influences various genomic regulators and subsequent gene expression in human cancer.However,knowledge of the topological rearrangement of genomic hierarchical layer...Altered three-dimensional architecture of chromatin influences various genomic regulators and subsequent gene expression in human cancer.However,knowledge of the topological rearrangement of genomic hierarchical layers in cancer is largely limited.Here,by taking advantage of in situ Hi-C,RNA-sequencing,and chromatin immunoprecipitation sequencing(ChIP-seq),we investigated structural reorganization and functional changes in chromosomal compartments,topologically associated domains(TADs),and CCCTC binding factor(CTCF)-mediated loops in gallbladder cancer(GBC)tissues and cell lines.We observed that the chromosomal compartment A/B switch was correlated with CTCF binding levels and gene expression changes.Increased inter-TAD interactions with weaker TAD boundaries were identified in cancer cell lines relative to normal controls.Furthermore,the chromatin short loops and cancer unique loops associated with chromatin remodeling and epithelial–mesenchymal transition activation were enriched in cancer compared with their control counterparts.Cancer-specific enhancer–promoter loops,which contain multiple transcription factor binding motifs,acted as a central element to regulate aberrant gene expression.Depletion of individual enhancers in each loop anchor that connects with promoters led to the inhibition of their corresponding gene expressions.Collectively,our data offer the landscape of hierarchical layers of cancer genome and functional alterations that contribute to the development of GBC.展开更多
文摘为研究野生与养殖小黄鱼群体的遗传多样性,基于mtDNA Cytb基因和D-loop控制区对舟山嵊泗海域(SS)和象山三门口海域(SMK)2个小黄鱼野生群体和1个养殖群体(YZ)的遗传结构与遗传分化等进行比较分析。序列分析结果显示,Cytb基因序列为841 bp,其A+T含量(50.2%)与C+G含量(49.8%)相似;D-loop区序列为629~635 bp,A+T含量(58.9%)远高于C+G含量(41.1%)。SS、SMK和YZ群体Cytb基因的单倍型数分别为26、27和12,SS和SMK群体共享2个单倍型(Hap1和Hap13),SMK和YZ群体共享1个单倍型(Hap41);SS、SMK和YZ群体D-loop区的单倍型数分别为27、30和10,SS和SMK群体共享1个单倍型(Hap4)。多样性分析结果显示,3个群体均属于高单倍型多样性(H_(d)>0.5),其中,SS和SMK群体单倍型多样性和核苷酸多样性高于YZ群体,表明野生群体多样性略高于养殖群体。遗传分化指数显示,2个小黄鱼野生群体间的分化程度极小,而养殖群体与野生群体间存在中度分化。遗传分化指数和AMOVA分析结果表明,群体内个体的变异是遗传变异的主要来源。Cytb基因和D-loop区序列中性检验结果中SS和SMK群体的Tajima s D值和Fu and Li s值均为负数,且Cytb基因的Tajima s D值和Fu and Li s值显著(P<0.05)偏离中性,表明2个野生群体有可能经历过群体扩张。单倍型系统发育树显示,SS、SMK和YZ群体均未表现出明显的地理聚集,群体间互有交叉,表明3个群体间的分化尚不明显。
基金supported by the National Natural Science Foundation of China(Nos.81874181,81902361,3213000192,and 91940305)the National Science and Technology Major Projects for“Major New Drug Innovation and Development”(No.2019ZX09301-158)+1 种基金the Shanghai Sailing Program(No.19YF1433000)the Open Project Program of State Key Laboratory of Oncogenes and Related Genes(No.KF2120).
文摘Altered three-dimensional architecture of chromatin influences various genomic regulators and subsequent gene expression in human cancer.However,knowledge of the topological rearrangement of genomic hierarchical layers in cancer is largely limited.Here,by taking advantage of in situ Hi-C,RNA-sequencing,and chromatin immunoprecipitation sequencing(ChIP-seq),we investigated structural reorganization and functional changes in chromosomal compartments,topologically associated domains(TADs),and CCCTC binding factor(CTCF)-mediated loops in gallbladder cancer(GBC)tissues and cell lines.We observed that the chromosomal compartment A/B switch was correlated with CTCF binding levels and gene expression changes.Increased inter-TAD interactions with weaker TAD boundaries were identified in cancer cell lines relative to normal controls.Furthermore,the chromatin short loops and cancer unique loops associated with chromatin remodeling and epithelial–mesenchymal transition activation were enriched in cancer compared with their control counterparts.Cancer-specific enhancer–promoter loops,which contain multiple transcription factor binding motifs,acted as a central element to regulate aberrant gene expression.Depletion of individual enhancers in each loop anchor that connects with promoters led to the inhibition of their corresponding gene expressions.Collectively,our data offer the landscape of hierarchical layers of cancer genome and functional alterations that contribute to the development of GBC.