Let D(G) =(d_(ij))_(n×n) denote the distance matrix of a connected graph G with order n, where d_(ij) is equal to the distance between vertices viand vjin G. A graph is called distance integral if all eigenvalues...Let D(G) =(d_(ij))_(n×n) denote the distance matrix of a connected graph G with order n, where d_(ij) is equal to the distance between vertices viand vjin G. A graph is called distance integral if all eigenvalues of its distance matrix are integers. In 2014, Yang and Wang gave a sufficient and necessary condition for complete r-partite graphs K_(p1,p2,···,pr)=K_(a1·p1,a2·p2,···,as···ps) to be distance integral and obtained such distance integral graphs with s = 1, 2, 3, 4. However distance integral complete multipartite graphs K_(a1·p1,a2·p2,···,as·ps) with s > 4 have not been found. In this paper, we find and construct some infinite classes of these distance integral graphs K_(a1·p1,a2·p2,···,as·ps) with s = 5, 6. The problem of the existence of such distance integral graphs K_(a1·p1,a2·p2,···,as·ps) with arbitrarily large number s remains open.展开更多
The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, ...The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, r f(G) , is defined to be the minimum cardinality of a set of edges which when added to G results in a graph G′ satisfying γ f(G′)< γ f(G) . G.S.Domke and R.C.Laskar initiated the study of them and gave exact values of b f(G) and r f(G) for some classes of graphs. Exact values of b f(G) and r f(G) for complete multipartite graphs are given and some results are extended.展开更多
基金Supported by the National Natural Science Foundation of China(11171273) Supported by the Graduate Starting Seed Fund of Northwestern Polytechnical University(Z2014173)
文摘Let D(G) =(d_(ij))_(n×n) denote the distance matrix of a connected graph G with order n, where d_(ij) is equal to the distance between vertices viand vjin G. A graph is called distance integral if all eigenvalues of its distance matrix are integers. In 2014, Yang and Wang gave a sufficient and necessary condition for complete r-partite graphs K_(p1,p2,···,pr)=K_(a1·p1,a2·p2,···,as···ps) to be distance integral and obtained such distance integral graphs with s = 1, 2, 3, 4. However distance integral complete multipartite graphs K_(a1·p1,a2·p2,···,as·ps) with s > 4 have not been found. In this paper, we find and construct some infinite classes of these distance integral graphs K_(a1·p1,a2·p2,···,as·ps) with s = 5, 6. The problem of the existence of such distance integral graphs K_(a1·p1,a2·p2,···,as·ps) with arbitrarily large number s remains open.
文摘The bondage number of γ f, b f(G) , is defined to be the minimum cardinality of a set of edges whose removal from G results in a graph G′ satisfying γ f(G′)> γ f(G) . The reinforcement number of γ f, r f(G) , is defined to be the minimum cardinality of a set of edges which when added to G results in a graph G′ satisfying γ f(G′)< γ f(G) . G.S.Domke and R.C.Laskar initiated the study of them and gave exact values of b f(G) and r f(G) for some classes of graphs. Exact values of b f(G) and r f(G) for complete multipartite graphs are given and some results are extended.