期刊文献+

完全m部图K_(m(r))的谱

Spectra of Complete M-Partite Graph
下载PDF
导出
摘要 关于带有参数(n,k,a,c)的强正则图,它的特征值具有如下性质:其中有一个特征值是度数k,它的重数取决于图的连通分支数.另外两个特征值分别是方程x2-(a-c)x-(k-c)=0的两个根为θ、T.其重数mθ、mT满足这样的等式:mθ+mT=n-1、k+mθθ+mTT=0.通过这样的性质,由强正则图可以容易得到它的谱.通过这一方法研究一类完全m部图Km(r)的谱. The eigenvalues of a strongly regular graph with parameters (n, k, a, c), are k and O, T which are the two roots of the quadratic equation x^2 - ( a - c) x - ( k - c) = 0. The multiplicities mo and mT can be determined from the equations mo + mT = n - 1, k + mθθ + mTT = 0. And this gives an alternative method of deteivaining its spectra. The complete multipartite graph Km(r) is illustrated.
出处 《广东工业大学学报》 CAS 2008年第2期35-37,共3页 Journal of Guangdong University of Technology
关键词 强正则图 完全m部图Km(r)谱 非本原图 strongly regular graph complete multipartite graph spectra imprimitive graph
  • 相关文献

参考文献7

  • 1Chris Godsil, Gordon Royle. Algebraic graph theory [ M ]. Germany Berlin : Springer Press ,2001. 被引量:1
  • 2Godsil C D. Algebraic Combinatorics [ M ]. USA New York : Chapman & Hall Press,1993. 被引量:1
  • 3钟富胜,王志民,张春元.正则图的谱性质[J].信息工程大学学报,2004,5(1):45-47. 被引量:2
  • 4Haemers W H. Strongly regular graphs with maximal energy [J]. CentER Discussion Paper Series,2007,37: 1-2. 被引量:1
  • 5Norman Biggs. Algebra graph [ M ]. Second Edition Cambridge : Cambridge University Press, 1993. 被引量:1
  • 6Beineke L W, Wilson R J. Selected topics in graph theory [ M ]. UK London : Academic Press, 1979. 被引量:1
  • 7Dragos Cvetkovic, Peter Rowlinson, Slobodan Simic. Eigenspaces of graphs [ M ]. UK Cambridge : Cambridge University Press, 1997. 被引量:1

二级参考文献8

  • 1[1]Doob M.An interrelation between line graphs,eigenvalues and matrix[J].Journal of Combin Theory Ser.B,1973,15:35-55. 被引量:1
  • 2[2]Hoffman Z J.Some recent results on spectral properties of graphs[A].Beitrage Zur Graphentheorie[C].Leipzig:Int.Koll.Manebach,1968,75-80. 被引量:1
  • 3[3]Biggs N L.Algebraic Graph Theory[M].Cambridge,Cambridge University Press,1993,6-22. 被引量:1
  • 4[4]Bondy J A,Murty U S R.Graph Theory with Applications[M].The Macmillan Press LTD, 1976. 被引量:1
  • 5[5]Cvetkovic D,Doob M,Sachs H.Spectra of Graphs,Theory and Application[M].NewYork:Academic Press,1980. 被引量:1
  • 6[6]Fielder M.Algebraic connectivity of graphs[J].Czechoslovak Math J,1973,23:298-305. 被引量:1
  • 7[7]Mohar B.The Laplacian Spectrum of Graphs,in Graph Theory[A].Combinatorics and Applications[C].New York:Wiley-Interscience,1991,871-898. 被引量:1
  • 8[8]Wilkinson J H.The Algebraic Eigenvalue Problem[M].Oxford University Press,1965. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部