摘要
根据完全多部图的特点,得到完全三部图和完全四部图的邻点被扩展和可区别全色数≤2,并证明Flandrin等(Discussiones Mathematicae Graph Theory,2017,37(1):29-37.)提出的NESDTC猜想对于完全三部图和完全四部图成立.最后对完全多部图的NESD问题作部分研究.
In this paper,we prove that the neighbor expanded sum and distinguishing total chromatic numbers of complete tripartite graphs and complete 4-partite graphs are no more than 2.This result illustrates that the NESDTC conjecture proposed by Flandrin et al(Discussiones Mathematicae Graph Theory,2017,37(1):29-37.)is true for complete tripartite graph and complete 4-partite graph.Moreover,the NESD problem of complete multipartite graph is partially studied.
作者
贾甜夏
赵聪慧
张淑敏
JIA Tianxia;ZHAO Conghui;ZHANG Shumin(College of Mathematics and Statistics,Qinghai Normal University,Xining 810008,Qinghai;Academy of Plateau Science and Sustainability,Xining 810008,Qinghai)
出处
《四川师范大学学报(自然科学版)》
CAS
2023年第4期525-531,共7页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(12261074、12201335和11661068)
青海省科技厅项目(2021-ZJ-703)。
关键词
完全三部图
完全四部图
完全多部图
邻点被扩展和可区别全染色
NESDTC猜想
complete tripartite graph
complete 4-partite graph
complete multipartite graph
neighbor expanded sum distinguis-hing total coloring
NESDTC conjecture