期刊文献+

Neighbor sum distinguishing total chromatic number of K4-minor free graph 被引量:2

Neighbor sum distinguishing total chromatic number of K4-minor free graph
原文传递
导出
摘要 A k-total coloring of a graph G is a mapping φ: V(G) U E(G) → {1, 2,..., k} such that no two adjacent or incident elements in V(G) U E(G) receive the same color. Let f(v) denote the sum of the color on the vertex v and the colors on all edges incident with v. We say that ~ is a k-neighbor sum distinguishing total coloring of G if f(u) ≠ f(v) for each edge uv C E(G). Denote X" (G) the smallest value k in such a coloring of G. Pilgniak and Wo/niak conjectured that for any simple graph with maximum degree △(G), X"(G) ≤ 3. In this paper, by using the famous Combinatorial Nullstellensatz, we prove that for Ka-minor free graph G with △(G) ≥ 5, X"(G) = △(G) + 1 if G contains no two adjacent A-vertices, otherwise, X"(G) = △(G) + 2. A k-total coloring of a graph G is a mapping φ: V(G) U E(G) → {1, 2,..., k} such that no two adjacent or incident elements in V(G) U E(G) receive the same color. Let f(v) denote the sum of the color on the vertex v and the colors on all edges incident with v. We say that ~ is a k-neighbor sum distinguishing total coloring of G if f(u) ≠ f(v) for each edge uv C E(G). Denote X" (G) the smallest value k in such a coloring of G. Pilgniak and Wo/niak conjectured that for any simple graph with maximum degree △(G), X"(G) ≤ 3. In this paper, by using the famous Combinatorial Nullstellensatz, we prove that for Ka-minor free graph G with △(G) ≥ 5, X"(G) = △(G) + 1 if G contains no two adjacent A-vertices, otherwise, X"(G) = △(G) + 2.
机构地区 School of Science
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第4期937-947,共11页 中国高等学校学术文摘·数学(英文)
关键词 Neighbor sum distinguishing total coloring Combinatorial Nullstellensatz K4-minor free graph Neighbor sum distinguishing total coloring, Combinatorial Nullstellensatz, K4-minor free graph
  • 相关文献

参考文献5

二级参考文献4

共引文献31

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部