期刊文献+

无K_(4)-子式图的2-距离和可区别边染色 被引量:7

2-distance sum distinguishing edge coloring of K_(4)-minor-free graphs
原文传递
导出
摘要 图G的一个正常边染色φ若满足:■u,v∈V(G),且d_(G)(u,v)≤2都有f(u)≠f(v),其中f(u)=∑uw∈E(G)φ(uw),则称φ为图G的2-距离和可区别边染色。运用反证法,结合构造染色函数法,研究了无K_(4)-子式图的2-距离和可区别边染色,确定了无K_(4)-子式图的2-距离和可区别边色数的一个上界。 Let φ be a proper edge coloring of graph G, for any u,v∈V(G), if d_(G)(u,v)≤2 such that f(u)≠f(v) where f(u)=∑uw∈E(G)φ(uw), then φ is the 2-distance sum distinguishing edge coloring of graph G. The 2-distance sum distinguishing edge coloring of K_(4)-minor-free graphs are studied by using the methods of contradiction and constructing coloring function, and a upper bound of the 2-distance sum distinguishing edge chromatic number of K_(4)-minor-free graphs is obtained.
作者 强会英 姚丽 QIANG Hui-ying;YAO Li(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,Gansu,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2021年第11期83-86,共4页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61962035)。
关键词 2-距离和可区别边染色 2-距离和可区别边色数 无K_(4)-子式图 2-distance sum distinguishing edge coloring 2-distance sum distinguishing edge chromatic K_(4)-minor-free graphs
  • 相关文献

参考文献5

二级参考文献30

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2张忠辅,陈祥恩,李敬文,姚兵,吕新忠,王建方.关于图的邻点可区别全染色[J].中国科学(A辑),2004,34(5):574-583. 被引量:192
  • 3张少君,陈祥恩,刘信生.关于Δ(G)=5的2-连通外平面图的邻点可区别全色数[J].西北师范大学学报(自然科学版),2005,41(5):8-13. 被引量:2
  • 4安明强.关于△(G)=6的2-连通外平面图的邻点可区别全染色[J].河西学院学报,2005,21(5):25-29. 被引量:2
  • 5Zhang Z, Liu L, Wang J. Adjacent strong edge coloring of graphs. Appl Math Lett, 15:623-626 (2002). 被引量:1
  • 6Balister P N, Gyori E, Lehel J, et al. Adjacent vertex distinguishing edge-colorings. SIAM J Discrete Math, 21:237-250 (2007). 被引量:1
  • 7Hatami H. A △- 300 is a bound on the adjacent vertex distinguishing edge chromatic number. J Combin Theory Set B, 95:246 256 (2005). 被引量:1
  • 8Behzad M. Graphs and their chromatic numbers. PhD Thesis. Michigan: Michigan State University, 1965. 被引量:1
  • 9Vizing V. Some unsolved problems in graph theory (in Russian). Uspekhi Mat Nauk, 23:117-134 (1968). 被引量:1
  • 10Chen X. On the adjacent vertex distinguishing total coloring numbers of graphs with A = 3. Discrete Math, 308:4003-4007 (2008). 被引量:1

共引文献36

同被引文献29

引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部