摘要
图G的一个正常边染色φ若满足:■u,v∈V(G),且d_(G)(u,v)≤2都有f(u)≠f(v),其中f(u)=∑uw∈E(G)φ(uw),则称φ为图G的2-距离和可区别边染色。运用反证法,结合构造染色函数法,研究了无K_(4)-子式图的2-距离和可区别边染色,确定了无K_(4)-子式图的2-距离和可区别边色数的一个上界。
Let φ be a proper edge coloring of graph G, for any u,v∈V(G), if d_(G)(u,v)≤2 such that f(u)≠f(v) where f(u)=∑uw∈E(G)φ(uw), then φ is the 2-distance sum distinguishing edge coloring of graph G. The 2-distance sum distinguishing edge coloring of K_(4)-minor-free graphs are studied by using the methods of contradiction and constructing coloring function, and a upper bound of the 2-distance sum distinguishing edge chromatic number of K_(4)-minor-free graphs is obtained.
作者
强会英
姚丽
QIANG Hui-ying;YAO Li(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,Gansu,China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2021年第11期83-86,共4页
Journal of Shandong University(Natural Science)
基金
国家自然科学基金资助项目(61962035)。