摘要
图G的一个集合边染色是边集E(G)到集合X中的非空子集的一个映射f,并且满足对图G中任意两条相邻的边e 1,e 2,有f(e 1)≠f(e 2)且f(e 1)∩f(e 2)≠,将集合X中的最小长度称为图G的集合边色数.通过引进集合矩阵,并利用构造染色矩阵的方法,得到了圈与路、路与路、圈与圈的笛卡尔积图的集合边色数.
A set edge coloring of graph G is a mapping f of edge set E(G)to non empty subsets of X,and for any two adjacent edges can meet the conditions of e 1,e 2∈E(G),f(e 1)≠f(e 2)and f(e 1)∩f(e 2)≠.The minimum length in set X is called the set edge chromatic number of graph G.The set matrix is firstly introduced and then the construction of coloring functions is applied to obtain the set edge chromatic number of some product graphs such as paths and paths,paths and cycles,and cycles and cycles.
作者
张明
贾泽乐
李沐春
ZHANG Ming;JIA Ze-le;LI Mu-chun(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;Institute of Applied Mathematics,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处
《兰州交通大学学报》
CAS
2021年第4期134-139,共6页
Journal of Lanzhou Jiaotong University
基金
国家自然科学基金(11961041)
甘肃省自然科学基金(17JR5RA099)
兰州交通大学青年基金(JGY201732)
兰州交通大学教改项目(JGY201732)。
关键词
积图
集合边染色
集合边色数
product graphs
set edge coloring
set edge chromatic number