Unified Parallel C (UPC) is a parallel extension of ANSI C based on the Partitioned Global Address Space (PGAS) programming model, which provides a shared memory view that simplifies code development while it can ...Unified Parallel C (UPC) is a parallel extension of ANSI C based on the Partitioned Global Address Space (PGAS) programming model, which provides a shared memory view that simplifies code development while it can take advantage of the scalability of distributed memory architectures. Therefore, UPC allows programmers to write parallel applications on hybrid shared/distributed memory architectures, such as multi-core clusters, in a more productive way, accessing remote memory by means of different high-level language constructs, such as assignments to shared variables or collective primitives. However, the standard UPC collectives library includes a reduced set of eight basic primitives with quite limited functionality. This work presents the design and implementation of extended UPC collective functions that overcome the limitations of the standard collectives library, allowing, for example, the use of a specific source and destination thread or defining the amount of data transferred by each particular thread. This library fulfills the demands made by the UPC developers community and implements portable algorithms, independent of the specific UPC compiler/runtime being used. The use of a representative set of these extended collectives has been evaluated using two applications and four kernels as case studies. The results obtained confirm the suitability of the new library to provide easier programming without trading off performance, thus achieving high productivity in parallel programming to harness the performance of hybrid shared/distributed memory architectures in high performance computing.展开更多
A protocol for quantum dialogue is proposed to exchange directly the communicator's secret messages by using a three-dimensional Bell state and a two-dimensional Bell state as quantum channel with quantum superdence ...A protocol for quantum dialogue is proposed to exchange directly the communicator's secret messages by using a three-dimensional Bell state and a two-dimensional Bell state as quantum channel with quantum superdence coding, local collective unitary operations, and entanglement swapping. In this protocol, during the process of trans- mission of particles, the transmitted particles do not carry any secret messages and are transmitted only one time. The protocol has higher source capacity than protocols using symmetric two-dimensional states. The security is ensured by the unitary operations randomly performed on all checking groups before the particle sequence is transmitted and the application of entanglement swapping.展开更多
基金funded by Hewlett-Packard (Project "Improving UPC Usability and Performance in Constellation Systems:Implementation/Extensions of UPC Libraries")partially supported by the Ministry of Science and Innovation of Spain under Project No.TIN2010-16735the Galician Government (Consolidation of Competitive Research Groups,Xunta de Galicia ref.2010/6)
文摘Unified Parallel C (UPC) is a parallel extension of ANSI C based on the Partitioned Global Address Space (PGAS) programming model, which provides a shared memory view that simplifies code development while it can take advantage of the scalability of distributed memory architectures. Therefore, UPC allows programmers to write parallel applications on hybrid shared/distributed memory architectures, such as multi-core clusters, in a more productive way, accessing remote memory by means of different high-level language constructs, such as assignments to shared variables or collective primitives. However, the standard UPC collectives library includes a reduced set of eight basic primitives with quite limited functionality. This work presents the design and implementation of extended UPC collective functions that overcome the limitations of the standard collectives library, allowing, for example, the use of a specific source and destination thread or defining the amount of data transferred by each particular thread. This library fulfills the demands made by the UPC developers community and implements portable algorithms, independent of the specific UPC compiler/runtime being used. The use of a representative set of these extended collectives has been evaluated using two applications and four kernels as case studies. The results obtained confirm the suitability of the new library to provide easier programming without trading off performance, thus achieving high productivity in parallel programming to harness the performance of hybrid shared/distributed memory architectures in high performance computing.
文摘A protocol for quantum dialogue is proposed to exchange directly the communicator's secret messages by using a three-dimensional Bell state and a two-dimensional Bell state as quantum channel with quantum superdence coding, local collective unitary operations, and entanglement swapping. In this protocol, during the process of trans- mission of particles, the transmitted particles do not carry any secret messages and are transmitted only one time. The protocol has higher source capacity than protocols using symmetric two-dimensional states. The security is ensured by the unitary operations randomly performed on all checking groups before the particle sequence is transmitted and the application of entanglement swapping.