The purpose of this note is to establish a general representation of Hankel matrices of Bell numbers and the convoluted Bell numbers. As a special case, the results of Aigner are extended.
In the paper,the authors collect,discuss,and find out several connections,equivalences,closed-form formulas,and combinatorial identities concerning partial Bell polynomials,falling factorials,rising factorials,extende...In the paper,the authors collect,discuss,and find out several connections,equivalences,closed-form formulas,and combinatorial identities concerning partial Bell polynomials,falling factorials,rising factorials,extended binomial coefficients,and the Stirling numbers of the first and second kinds.These results are new,interesting,important,useful,and applicable in combinatorial number theory.展开更多
In the existing formalism of quantum states, probability amplitudes of quantum states are complex numbers. A composition of entangled quantum states, such as a Bell state, cannot be decomposed into its constituent qua...In the existing formalism of quantum states, probability amplitudes of quantum states are complex numbers. A composition of entangled quantum states, such as a Bell state, cannot be decomposed into its constituent quantum states, implying that quantum states lose their identities when they get entangled. This is contrary to the observation that a composition of entangled quantum states decays back to its constituent quantum states. To eliminate this discrepancy, this paper introduces a new type of numbers, called virtual numbers, which produce zero upon multiplication with complex numbers. In the proposed formalism of quantum states, probability amplitudes of quantum states are general numbers made of complex and virtual numbers. A composition of entangled quantum states, such as a Bell state, can then be decomposed into its constituent quantum states, implying that quantum states retain their identities when they get entangled.展开更多
We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotatio...We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotational asymmetry of the quantum state, the ratio of Os to ls varies with the measurement bases. The experimental partners can then use their measurement outcomes to generate the biased random bit string. The bias of their bit string can be adjusted by altering their choices of measurement bases. When this protocol is implemented in a device-independent way, we show that the bias of the bit string can still be ensured under the collective attack.展开更多
文摘The purpose of this note is to establish a general representation of Hankel matrices of Bell numbers and the convoluted Bell numbers. As a special case, the results of Aigner are extended.
基金supported in part by the National Natural Science Foundation of China(Grant No.12061033)by the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(Grants No.NJZY20119)by the Natural Science Foundation of Inner Mongolia(Grant No.2019MS01007),China.
文摘In the paper,the authors collect,discuss,and find out several connections,equivalences,closed-form formulas,and combinatorial identities concerning partial Bell polynomials,falling factorials,rising factorials,extended binomial coefficients,and the Stirling numbers of the first and second kinds.These results are new,interesting,important,useful,and applicable in combinatorial number theory.
文摘In the existing formalism of quantum states, probability amplitudes of quantum states are complex numbers. A composition of entangled quantum states, such as a Bell state, cannot be decomposed into its constituent quantum states, implying that quantum states lose their identities when they get entangled. This is contrary to the observation that a composition of entangled quantum states decays back to its constituent quantum states. To eliminate this discrepancy, this paper introduces a new type of numbers, called virtual numbers, which produce zero upon multiplication with complex numbers. In the proposed formalism of quantum states, probability amplitudes of quantum states are general numbers made of complex and virtual numbers. A composition of entangled quantum states, such as a Bell state, can then be decomposed into its constituent quantum states, implying that quantum states retain their identities when they get entangled.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61378011,U1204616 and 11447143the Program for Science and Technology Innovation Talents in Universities of Henan Province under Grant No 2012HASTIT028the Program for Science and Technology Innovation Research Team in University of Henan Province under Grant No 13IRTSTHN020
文摘We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser Home inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotational asymmetry of the quantum state, the ratio of Os to ls varies with the measurement bases. The experimental partners can then use their measurement outcomes to generate the biased random bit string. The bias of their bit string can be adjusted by altering their choices of measurement bases. When this protocol is implemented in a device-independent way, we show that the bias of the bit string can still be ensured under the collective attack.