摘要
首先给出与第一类Stirling数有联系的两个发生函数间关系引理及其相关的引理,然后利用这些引理和发生函数方法建立起涉及第一类降阶Stirling数、第一类升阶Stirling数分别与Bernou lli数、Eu ler数、Bell数及有序Bell数的几个恒等式.
In this paper, at first a lemma of two generating functions with Stifling numbers of the first kind and related lemmas are given; and then, several identity involving Bernoulli numbers, Euler numbers, Bell numbers, order Bell numbers and Stifling numbers of the first kind are established with these lemmas and the method of generating function.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2006年第6期12-15,共4页
Journal of Anhui University(Natural Science Edition)