This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the...This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests.展开更多
基金supported by the State Key Program of National Natural Science of China(Grant No.60736025)the National Natural Science Foundation of China(Grant No.60905056)the National Basic Research Program of China(973 Program)(Grant No.2009CB72400102)
文摘This paper proposes a new adaptive linear domain system identification method for small unmanned aerial rotorcraft.Byusing the flash memory integrated into the micro guide navigation control module, system records the data sequences of flighttests as inputs (control signals for servos) and outputs (aircraft’s attitude and velocity information).After data preprocessing, thesystem constructs the horizontal and vertical dynamic model for the small unmanned aerial rotorcraft using adaptive geneticalgorithm.The identified model is verified by a series of simulations and tests.Comparison between flight data and the one-stepprediction data obtained from the identification model shows that the dynamic model has a good estimation for real unmannedaerial rotorcraft system.Based on the proposed dynamic model, the small unmanned aerial rotorcraft can perform hovering,turning, and straight flight tasks in real flight tests.