期刊文献+

基于自适应BP神经网络的网络流量识别算法 被引量:17

Internet Traffic Identification Algorithm Based on Adaptive BP Neural Network
下载PDF
导出
摘要 针对新兴网络应用无法使用传统的基于端口与特征码进行识别的问题,对基于流量统计分析的网络协议识别方法进行了研究,提出了基于自适应BP神经网络的流量识别算法。对BP神经网络结构难以确定、易陷入局部极小值等缺陷进行了分析,使用双粒子群算法对BP神经网络进行优化以提高识别率。实验表明,该算法能根据网络流量的统计特征有效地识别网络应用,且对于采用UDP协议的应用同样有较高的识别率,同时优化后的自适应BP神经网络训练时间更短;并能自动调整其结构,具有良好的自适应特性。 Intemet traffic identification is currently an important challenge for network management. Traditional approaches focus on identifying TCP flows and cannot accurately classify emerging network applications. In this paper, a new approach based on adaptive back-propagation (BP) neural network is proposed to identify both TCP and UDP traffic flows. This approach uses the dual particle swarm optimization (PSO) algorithm to optimize the BP neural network. The experimental results show that the proposed approach can classify both TCP and UDP traffic flows at a high rate and can reduce the training time and adjust the number of hidden layer nodes of BP neural network adaptively.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第4期580-585,共6页 Journal of University of Electronic Science and Technology of China
基金 国家973项目(2007CB311106) 国防重点实验室基金(NEUL20090101)
关键词 自适应算法 神经网络 粒子群优化 统计特征 流量识别 adaptive algorithm neural networks particle swarm optimization statistical characteristic traffic identification
  • 相关文献

参考文献14

  • 1AZZOUNA N B, GUILLEMIN K Impact of peer-to-peer applications on wide area network traffic: an experimental approach[C]//Proc of IEEE Global Telecommunications Conference. Texas, USA: IEEE, 2004:1544-1548. 被引量:1
  • 2JUNG-TAE K, HAE-KYEONG P, EUI-HYUN P. Security issues in peer-to-peer systems[C]//The 7th International Conference on Advanced Communications Technology. Phoenix Park, USA: IEEE, 2005:1059-1063. 被引量:1
  • 3SEN S, WANG J. Analyzing peer-to-peer traffic across large networks[J]. IEEE Trans on Networking, 2004, 2(2): 219-232. 被引量:1
  • 4SEN S, SPATSCHECK O, WANG D. Accurate, scalable in-network identification of P2P trac using application signatures[C]//Proceedings of ACM WWW'04. New York, USA: ACM, 2004: 512-521. 被引量:1
  • 5KARAGIANNIS T, BROIDO A. Transport layer identification ofP2P traffic[C]//Proceedings of the 4th ACM SIC,-COMM Conference on Intemet Measurement. Sicily, Italy: ACM, 2004: 121-134. 被引量:1
  • 6ESTE A, GRINGOLI F, SALGARELLI L. Support vector machines for TCP traffic classification[J]. Computer Networks, 2009, 53(14): 2476-2490. 被引量:1
  • 7LI Zhu, YUAN Rui-xi, GUAN Xiao-hong. Accurate classification of the intemet traffic based on the SVM Method[C]//IEEE International Conference on Communications. Glasgow, Scotland: IEEE, 2007: 1373-1378. 被引量:1
  • 8RAA MI B, ZHONG Wei-cai, LIU Jing. Peer-to-peer traffic identification by mining IP layer data streams using concept-adapting very fast decision tree[C]//Proc of the 20th IEEE International Conference on Tools with Artificial Intelligence. Dayton, OH, USA: IEEE, 2008: 525-532. 被引量:1
  • 9AULD T, MOORE A W, GULL S F. Bayesian neural networks for interact nS, ffic classification[J]. IEEE Transaction on Neural Networks, 2007, 18(1): 223-239. 被引量:1
  • 10CHEN Hong=wei, HU Zheng=bing, YE Zhi-wei, et al. Research of P2P traffic identification based on neural nctwork[C]//Intcmational Symposium on Computer Network and Multimedia Technology. Wuhan, China: 1EEE, 2009: 1-4. 被引量:1

同被引文献114

引证文献17

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部