期刊文献+

基于BP神经网络的软件行为评估系统 被引量:4

Software Behavior Evaluation System Based on BP Neural Network
下载PDF
导出
摘要 针对当前国内信息安全领域对于恶意软件的判断智能化程度较低的现状,分析不同类型的恶意软件,提取典型的危险行为特征,对这些行为进行整合并建立一个行为映射库,将软件行为映射成数据,设计算法将其转换成可用于实际神经网络训练的数据。通过反复实验,给出一个适用于训练该类型样本的BP神经网络,并确定其中各个算子和参数值。通过训练该神经网络,建立一个判断可疑软件是否为恶意软件的行为评估系统。实验结果证明了上述设计的正确性,系统的漏报率和误报率仅为1%和3.7%。 In current,since judging the malware in information security area in China has relatively low intelligence,this paper analyzes a large number of malicious softwares,and extracts the typical characteristics of dangerous behavior,then integrates these acts and builds a mapping library for these behaviors,which is used for transfering the behavior into data.It also designs an algorithm to make the data can directly be used for training. Through myriads of experiments,a BP neural network suitable for training type is designed,and each operator and parameter are determined. By training the neural network,this paper establishes a system to judge whether the suspicious one is a malware. Experimental result shows that this idea is right,and the false alarm rate and false negative rate are1% and3.7%.
出处 《计算机工程》 CAS CSCD 2014年第9期149-154,共6页 Computer Engineering
基金 湖南省自然科学基金资助项目(12JJ3066) 教育部重点实验室开放课题基金资助项目(2013IM02) 湖南省"十二五"重点学科建设基金资助项目
关键词 信息安全 智能 危险行为 恶意软件 BP神经网络 行为评估 information security intelligence risk behavior malware BP neural network behavior evaluation
  • 相关文献

参考文献5

二级参考文献39

  • 1张银雪,贾振红,刘子建.基于改进BP神经网络和粒子群优化算法的图像滤波方法的研究[J].光电子.激光,2009,20(3):406-409. 被引量:10
  • 2蒲春,孙政顺,赵世敏.Matlab神经网络工具箱BP算法比较[J].计算机仿真,2006,23(5):142-144. 被引量:68
  • 3王静伟.BP神经网络改进算法的研究.中国水运,2008,8(1):157-158. 被引量:9
  • 4LIU Suyi,ZHANG Leduo,WANG Qian,et al.BP neural network in classification of fabric defect based on particle swarm optimization[C]//Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern Recognition,ICWAPR.Hong Kong,IEEE,2008:216-220. 被引量:1
  • 5LIU Suyi,LIU Jingjing,ZHANG Leduo.Classification of fabric defect based on PSO-BP neural network[C]//Proceedings-2nd International Conference on Genetic and Evolutionary Computing,WGEC 2008.Jingzhou.IEEE,2008:137-140. 被引量:1
  • 6GAO Yuelin,LIU Junmin.A modified differential evolution algorithm and it application in the training of BP neural network[C]//Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.Xi' an:IEEE,2008:1373-1377. 被引量:1
  • 7SHEN Xianjun,CHEN Caixia,HE Tingting,et al.Postgraduate entrant and employment forecasting using modified BP neural network with PSO[C]//Proceedings of 2009 4th International Conference on Computer Science and Education,ICCSE 2009.Nanning:IEEE,2009:1699-1703. 被引量:1
  • 8XIONG Zhibin.A modified adaptive genetic BP neural network with application to financial distress analysis[C]//Proceedings-2nd International Conference on Genetic and Evolutionary Computing,WGEC 2008.Jingzhou:IEEE,2008.149. 被引量:1
  • 9CHENG Qiming,DU Xufeng,ZHENG Yong,et al.The control system of GA-BP fuzzy neural network controller and elman network identifier[C]//Proceedings of the IEEE International Conference on Automation and Logistics,ICAL 2008.Qingdao:IEEE,2008:1653-1657. 被引量:1
  • 10HENNESSY J L, PATTERSON D A. Computer Architecture: a Quantitative Approach[M], Beijing: the China Machine Press, 2007.288-289. 被引量:1

共引文献30

同被引文献52

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部