期刊文献+

基于RBF神经网络的超声波电机参数辨识与模型参考自适应控制 被引量:13

IDENTIFICATION AND MODEL REFERENCE ADAPTIVE CONTROL FOR ULTRASONIC MOTOR BASED ON RBF NEURAL NETWORK
下载PDF
导出
摘要 超声波电机(USM)是近年发展起来的一种新型微特电机,与传统的电磁驱动型电机的工作原理截然不同。由于USM具有小型轻量、无电磁干扰、响应速度快、低速大转矩、高保持力矩、高功率密度等诸多优点,因而在光学仪器、办公自动化、汽车专用电器、智能机器人、航空航天等领域具有良好的应用前景。但USM的高度非线性、时变性和强耦合增加了它的控制难度。该文提出一种新的USM自适应控制策略。系统采用双闭环控制,内环用来补偿定子环机械谐振频率的漂移;外环利用径向基函数神经网络(RBFNN)控制器调节USM的驱动频率,实现速度的自适应控制。经实验证明,该控制系统具有响应迅速、适应性强等优点,具有较高的控制精度和较好的稳定性。 Ultrasonic motor (USM) is a newly developed motor, and it is quite different from the traditional electromagnetic motors. USM has excellent performance and many useful features, therefore, it has been expected to be of practical use. However, because of the complicated coupling among the variables, high nonlinear characteristics and uncertainty of the parameters and so on, up to the present, no accurate mathematical model has been derived. Hence, the precise speed control of USM is generally difficult. This paper proposes a new model reference adaptive speed control scheme. Two closed loops are constructed here. The inner loop is built as a mechanical resonant frequency compensator. The frequency is regulated in the other loop by the Radial Basis Function neural network (RBFNN) controller whose parameters are adjusted on-line by the use of another RBFNN which can approximate the nonlinear input-output mappings of the motor. With the proposed method, excellent flexibility and adaptability as well as high precision and good robustness are obtained by experiments based on DSP.
出处 《中国电机工程学报》 EI CSCD 北大核心 2004年第7期117-121,共5页 Proceedings of the CSEE
基金 国家自然科学基金(50207006) 天津市自然科学基金(023603311)~~
关键词 超声波电机 参数辨识 模型参考 自适应控制 RBF神经网络 微特电机 Electric machinery and electrotechnology USM Adaptive control RBF Neural network Identification
  • 相关文献

参考文献9

二级参考文献26

  • 1夏长亮,陈永校.行波类环形超声波电动机及其变频控制[J].电工电能新技术,1994,13(4):5-10. 被引量:17
  • 2夏长亮,史婷娜,陈永校.环形超声波电动机定子振动的固有频率[J].微特电机,1995,23(4):6-9. 被引量:8
  • 3朱英华,屠乃美,关广晟,王中美.作物硫营养的研究进展[J].作物研究,2006,20(5):522-525. 被引量:13
  • 4邵惠芳,任晓红,乔宁,刘余里,王文飞,于建军.烟草硫素营养研究进展[J].中国农学通报,2007,23(3):304-307. 被引量:15
  • 5Johnson J P, Ehsani M, Guzelgunler Y. Review of sensorless methods for brushless DC[C].IEEe Thirty-Fourth IAS Annual Meeting, 1999. 被引量:1
  • 6Lizuka K, Uzuhashi H, Kano M, et al. Microcomputer control for scnsorless brushless motor[J]. IEEE Trans on Industry Application, 1985, IA-21(3): 595-601. 被引量:1
  • 7Corley M J, Lorenz R D. Rotor position and velocity estimation for a salicat-pole permanent magnet synchronous machine at standstill and high speeds[J].IEEE Trans on Industry Application, 1998,34(2): 784-789. 被引量:1
  • 8Chen Zhiqian, Mutuwo Tomita, Shinji Doki, et al. New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors[J]. IEEE Trans on Industrial Electronics, 2000,47(3): 582-591. 被引量:1
  • 9Toshio Fukuda. Takanori Shibata. Theory and applications of neural networks for industrial control systems[J]. IEEE Trans. on Industrial Electronics, 1992,39(6): 472-489. 被引量:1
  • 10Huang Fengtai, Tian Dapeng. A neural network approach to position sensorless control of brushless DC motors[C]. Proc. IEEE IECON 22nd International Conference, 1996. 被引量:1

共引文献184

同被引文献126

引证文献13

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部