The technology of forming and machining lump nano-materials has beeninvestigated. Grinding, abrasive machining test has been conducted to Fe, Co, Ni and Al lumpnano-materials. Experiments have been done to measure gri...The technology of forming and machining lump nano-materials has beeninvestigated. Grinding, abrasive machining test has been conducted to Fe, Co, Ni and Al lumpnano-materials. Experiments have been done to measure grinding force, grinding thermal, machiningroughness and micro-hardness. Image analysis is carried out by metallographic and scanning tunnelmicroscopic microscope. Researches provide the basis data for forming and machining lumpnano-materials.展开更多
Thin film structures are becoming increasingly more important for industrial applications such as the making of solar panels, microelectronic devices and micro systems. However, the challenges encountered in the machi...Thin film structures are becoming increasingly more important for industrial applications such as the making of solar panels, microelectronic devices and micro systems. However, the challenges encountered in the machining of thin film structures have been a bottleneck that impedes further wide spread uses of such structures. The development of material removal processes that are capable of producing a damage free surface at high removal rates is critical for cost effective production. Such development relies highly on a comprehensive understanding of the deformation, failure and removal mechanisms of thin film structures involved in mechanical loading. In this paper, the current understanding of the deformation characteristics of thin film systems was reviewed to provide important insights into the interracial failure under mechanical loading, with focuses on the interfacial failure mechanisms and existing problems in the machining of thin film structures. The key characterization techniques were outlined. In particular, the recent progress in the abrasive machining of a thin film multilayer structure was summarized. The potential research directions were also presented in the end of the review.展开更多
文摘The technology of forming and machining lump nano-materials has beeninvestigated. Grinding, abrasive machining test has been conducted to Fe, Co, Ni and Al lumpnano-materials. Experiments have been done to measure grinding force, grinding thermal, machiningroughness and micro-hardness. Image analysis is carried out by metallographic and scanning tunnelmicroscopic microscope. Researches provide the basis data for forming and machining lumpnano-materials.
文摘Thin film structures are becoming increasingly more important for industrial applications such as the making of solar panels, microelectronic devices and micro systems. However, the challenges encountered in the machining of thin film structures have been a bottleneck that impedes further wide spread uses of such structures. The development of material removal processes that are capable of producing a damage free surface at high removal rates is critical for cost effective production. Such development relies highly on a comprehensive understanding of the deformation, failure and removal mechanisms of thin film structures involved in mechanical loading. In this paper, the current understanding of the deformation characteristics of thin film systems was reviewed to provide important insights into the interracial failure under mechanical loading, with focuses on the interfacial failure mechanisms and existing problems in the machining of thin film structures. The key characterization techniques were outlined. In particular, the recent progress in the abrasive machining of a thin film multilayer structure was summarized. The potential research directions were also presented in the end of the review.