期刊文献+

融合磨粒特征和工艺参数的粗糙度智能预测研究

Study on Intelligent Prediction of Surface Roughness Based on Integration of Abrasive Characteristics and Process Parameters
原文传递
导出
摘要 针对加工对象受磨削工具表面状态和工艺参数的综合影响而造成表面粗糙度难以有效准确预测问题,提出了融合磨粒特征和工艺参数的表面粗糙度智能预测方法。基于采集的金刚石磨粒图像,利用图像处理技术提取了工具表面的单位面积磨粒数、磨粒分布均匀性和磨粒出刃高度三个关键特征信息,并评价了提取的特征信息的有效性。在此基础上,提出了融合磨粒特征和工艺参数的粗糙度智能预测算法,开展了YG8硬质合金铣磨加工实验,并将加工结果与预测结果进行对比。结果表明:提出的智能算法可以提高粗糙度预测的准确性和稳定性,其预测的准确率可达到95.6%,而基于传统工艺参数回归模型的准确率仅为86.3%,所提出的方法为粗糙度智能预测提供了参考。 Aiming at the problem that it is difficult to predict the surface roughness of the machined object effectively and accurately due to the comprehensive influence of the surface state of grinding tools and process parameters,an intelligent prediction method of surface roughness based on the integration of abrasive characteristics and processing parameters is proposed.Based on the collected diamond abrasive images on the tool surface,three key characteristic information of abrasive number per unit area,abrasive distribution uniformity and abrasive protrusion height on the tool surface are extracted by using image processing technology,and the effectiveness of the extracted characteristic information is verified.On this basis,a surface roughness intelligent prediction algorithm integrating abrasive characteristics and process parameters is proposed,the milling experiment of YG8 cemented carbide is carried out,and the machining results are compared with the predicted results.The results show that the proposed intelligent algorithm can greatly improve the accuracy and stability of surface roughness prediction,and its prediction accuracy can reach 95.6%,while the accuracy of regression model based on traditional process parameters is only 86.3%,which provides a reference for the intelligent prediction of surface roughness in abrasive machining.
作者 方从富 李弘扬 沈剑云 吴贤 FANG Congfu;LI Hongyang;SHEN Jianyun;WU Xian(College of Mechanical Engineering and Automation,Huaqiao University,Xiamen 361021)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2024年第7期224-235,共12页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(51675193,52275426)。
关键词 磨粒加工 图像处理 特征信息 智能算法 粗糙度 abrasive machining image processing characteristic information intelligent algorithm surface roughness
  • 相关文献

参考文献14

二级参考文献111

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部