This study investigated the expression of lung surfactant proteins SP-B and SP-C, and their modulating factors TTF-1 and PLAGL2 in the fetal lung of rats with fetal growth restriction(FGR). The rat FGR model was est...This study investigated the expression of lung surfactant proteins SP-B and SP-C, and their modulating factors TTF-1 and PLAGL2 in the fetal lung of rats with fetal growth restriction(FGR). The rat FGR model was established by prenatal hypoxia in the first stage of pregnancy, 180 rats for experiment served as hypoxia group, and 197 healthy rats served as normal control group. The FGR incidence in hypoxia was compared with that in normal control group. The histological changes in the fetal lung were observed under the light microscope and electronic microscope in two groups. The SP-B, SP-C, TTF-1 and PLAGL2 proteins were determined in the fetal lung of two groups immunohistochemically. The expression levels of SP-B, SP-C, TTF-1 and PLAGL2 protein and m RNA in the fetal lung of two groups were detected by using Western blotting and RT-PCR respectively. The FGR rat model was successfully established by using hypoxia. Pathologically the fetal lung developed slowly, and the expression levels of SP-B, SP-C, TTF-1 and PLAGL2 protein and mR NA in the fetal lung were significantly reduced in hypoxia group as compared with those in normal control group. It was suggested that maternal hypoxia in the first stage of pregnancy could induce FGR, and reduce the expression of SP-B and SP-C, resulting in the disorder of fetal lung development and maturation.展开更多
The lung plays a vital role in maintaining homeostasis,as it is responsible for the exchange of oxygen and carbon dioxide.Pulmonary homeostasis is maintained by a network of tissue-resident cells,including epithelial ...The lung plays a vital role in maintaining homeostasis,as it is responsible for the exchange of oxygen and carbon dioxide.Pulmonary homeostasis is maintained by a network of tissue-resident cells,including epithelial cells,endothelial cells and leukocytes.Myeloid cells of the innate immune system and epithelial cells form a critical barrier in the lung.Recently developed unbiased next generation sequencing(NGS)has revealed cell heterogeneity in the lung with respect to physiology and pathology and has reshaped our knowledge.New phenotypes and distinct gene signatures have been identified,and these new findings enhance the diagnosis and treatment of lung diseases.Here,we present a review of the new NGS findings on myeloid cells in lung development,homeostasis,and lung diseases,including acute lung injury(ALI),lung fibrosis,chronic obstructive pulmonary disease(COPD),and lung cancer.展开更多
基金supported by the National Natural Science Foundation of China(No.30971072)
文摘This study investigated the expression of lung surfactant proteins SP-B and SP-C, and their modulating factors TTF-1 and PLAGL2 in the fetal lung of rats with fetal growth restriction(FGR). The rat FGR model was established by prenatal hypoxia in the first stage of pregnancy, 180 rats for experiment served as hypoxia group, and 197 healthy rats served as normal control group. The FGR incidence in hypoxia was compared with that in normal control group. The histological changes in the fetal lung were observed under the light microscope and electronic microscope in two groups. The SP-B, SP-C, TTF-1 and PLAGL2 proteins were determined in the fetal lung of two groups immunohistochemically. The expression levels of SP-B, SP-C, TTF-1 and PLAGL2 protein and m RNA in the fetal lung of two groups were detected by using Western blotting and RT-PCR respectively. The FGR rat model was successfully established by using hypoxia. Pathologically the fetal lung developed slowly, and the expression levels of SP-B, SP-C, TTF-1 and PLAGL2 protein and mR NA in the fetal lung were significantly reduced in hypoxia group as compared with those in normal control group. It was suggested that maternal hypoxia in the first stage of pregnancy could induce FGR, and reduce the expression of SP-B and SP-C, resulting in the disorder of fetal lung development and maturation.
基金the USA National Institutes of Health Grant R01-HL-079669(J.F.)USA National Institutes of Health Grant R01HL076179(J.F.)+2 种基金USA National Institutes of Health Grant R01HL-139547(J.F.)VA Merit Award 1I01BX002729(J.F.)VA BLR&D Award 1IK6BX004211(J.F.).
文摘The lung plays a vital role in maintaining homeostasis,as it is responsible for the exchange of oxygen and carbon dioxide.Pulmonary homeostasis is maintained by a network of tissue-resident cells,including epithelial cells,endothelial cells and leukocytes.Myeloid cells of the innate immune system and epithelial cells form a critical barrier in the lung.Recently developed unbiased next generation sequencing(NGS)has revealed cell heterogeneity in the lung with respect to physiology and pathology and has reshaped our knowledge.New phenotypes and distinct gene signatures have been identified,and these new findings enhance the diagnosis and treatment of lung diseases.Here,we present a review of the new NGS findings on myeloid cells in lung development,homeostasis,and lung diseases,including acute lung injury(ALI),lung fibrosis,chronic obstructive pulmonary disease(COPD),and lung cancer.