Objective: To study the inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice. Methods: Female mice were selected as experimental animals, and breast cancer tu...Objective: To study the inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice. Methods: Female mice were selected as experimental animals, and breast cancer tumor-bearing mouse models were established and then divided into group A, B, C and D that respectively received saline, recombinant human endostatin, ginsenosides Rg3 and recombinant human endostatin combined with Rg3 intervention; 7 d, 14 d and 21 d after intervention, tumor tissue volume was measured; 21 d after intervention, mice were killed, tumor tissue was collected, and m RNA contents of angiogenesis molecules, invasion molecules, autophagy marker molecules and autophagy signaling pathway molecules were detected. Results: At 7 d, 14 d and 21 d after intervention, tumor tissue volume of group B, C and D was lower than that of group A, and tumor tissue volume of group D was lower than that of group B and C; m RNA contents of VEGFA, VEGFB, VEGFC, MMP2, MMP9, p62, m TOR, PI3 K, Akt, JNK and Beclin-1 in tumor tissue of group B, C and D were significantly lower than those of group A, and LC3-II/LC3-I was significantly higher than that of group A; m RNA contents of VEGFA, VEGFB, VEGFC, MMP2, MMP9, p62, m TOR, PI3 K, Akt, JNK and Beclin-1 in tumor tissue of group D were significantly lower than those of group B and C, and LC3-II/LC3-I was higher than that of group B and C. Conclusions: Endostar combined with ginsenoside Rg3 has stronger inhibiting effect on breast cancer tumor growth in tumor-bearing mice than single drug, and it can inhibit angiogenesis and cell invasion, and enhance cell autophagy.展开更多
Background Gene-radiotherapy, the combination of gene therapy and radiation therapy, is a new paradigm for cancer treatment. To enhance anti-tumor effect of gene-radiotherapy, in this study we construct a radiation-in...Background Gene-radiotherapy, the combination of gene therapy and radiation therapy, is a new paradigm for cancer treatment. To enhance anti-tumor effect of gene-radiotherapy, in this study we construct a radiation-inducible dual-gene co-expression vector pEgr-interferon(IFN)-γ- endostatin and studied the anti-tumor effect of pEgr-IFN-γ-endostatin gene-radiotherapy in mice bearing Lewis lung carcinoma and its mechanism.Methods Gene recombinant technique was used to construct dual-gene co-expression plasmid pEgr-IFN-γ-endostatin, and single-gene expression plasmid pEgr-IFN-γ and pEgr-endostatin. The plasmids packed by liposome were injected locally into the tumors of the mice, and the tumors were irradiated with 5 Gy X-ray 36 hours later. The tumor growth rate at different time and mean survival period of the mice were observed. Cytotoxic activity of splenic cytotoxic T-lymphocyte (CTL), natural killer (NK) cell and tumor necrosis factor (TNF)-α secretion activity of peritoneal macrophages of the mice in various groups were evaluated 15 days after irradiation. The intratumor micro-vessel density was evaluated by immunohistochemical staining 10 days after irradiation.Results The tumor growth rate of the mice in dual-gene-radiotherapy group was significantly lower than those in control group, 5 Gy group and single-gene-radiotherapy group at different time after gene-radiotherapy, and the mean survival period of which was longer. Cytotoxic activity of splenic CTL, NK and TNF-α secretion activity of peritoneal macrophages of the mice in dual-gene-radiotherapy group were significantly higher than those in control group, 5 Gy X-ray irradiation group and pEgr-endostatin gene-radiotherapy group 15 days after irradiation. The intratumor micro-vessel density of the mice in dual-gene-radiotherapy group was significantly lower than those in control group, 5 Gy X-ray irradiation group and pEgr-IFN-γgene-radiotherapy group. Conclusion The anti-tumor effect of dual-gene-radiotherapy was significantly better than that of s展开更多
Objective:To investigate the effects of NF-κB inhibitor pyrrolidine dithiocarbamate hydrochloride(PDTC) on vascular endothelial growth factor(VEGF) and endostatin expression in mice with Lewis lung cance;and its mech...Objective:To investigate the effects of NF-κB inhibitor pyrrolidine dithiocarbamate hydrochloride(PDTC) on vascular endothelial growth factor(VEGF) and endostatin expression in mice with Lewis lung cance;and its mechanism.Methods:Mice survival rate and anti-tumor effects were observed in different concentrations of NF-κB inhibitor PDTC after the Lewis lung cancer mice model was established.VEGF and endostatin expressions were detected by immunohistochemical assay.Results:Lewis lung cancer was be inhibited by 0.5 mg/kg.1.5 mg/kg and 3.0 mg/kg of NF-κB inhibitor PDTC(P<0.05).Microvessel density(MVD) in 0.5 mg/kg.1.5 mg/kg and 3.0 mg/kg NF-κB inhibitor PDTC groups were significantly lower than the control group(P<0.05).Immunohistochemical assay results showed that VEGF and endostatin expressions in the 0.5 mg/kg.1.5 mg/kg and 3.0 mg/kg NF-κB inhibitor PDTC groups were significantly lower than the control group(P<0.05).Western blot results also showed that NF-κB inhibitor PDTC could inhibit VEGF and endostatin expressions in tumor tissues.Conclusions:NF-κB inhibitor PDTC can inhibit tumor formation and reduce tumor angiogenesis in mice with Lewis lung cancer;and its mechanism maybe associated to VEGF and endostatin down-regulation.展开更多
This study examined the effects of TRAIL-endostatin-based gene-radiotherapy on cellu-lar growth, apoptosis and cell cycle progression in human vascular endothelial cells ECV304 in vitro. The expression of TRAIL and en...This study examined the effects of TRAIL-endostatin-based gene-radiotherapy on cellu-lar growth, apoptosis and cell cycle progression in human vascular endothelial cells ECV304 in vitro. The expression of TRAIL and endostatin protein in ECV304 cells was detected by ELISA after the transfection of recombinant plasmid pshuttle-Egr1-shTRAIL-shES and X-ray irradiation. Then MTT assay was used for determining the cellular proliferation, and flow cytometry (FCM) plus Annexin V and propidium iodide (PI) double-staining or PI single-staining were employed for the detection of apoptosis and cell cycle progression. The results showed that expression of TRAIL and endostatin protein exhibited a time- and dose-dependent change in ECV304 cells after pshut-tle-Egr1-shTRAIL-shES transfection in conjunction with irradiation. In the TRAIL-endostatin-based single- or double-gene-radiotherapy, the cell viability declined in a time- and dose-dependent manner, the percentage of cells at G2/M phase and apoptotic rate was increased, and the percentage of cells at G0/G1 phase was lowered as compared with those receiving radiotherapy alone. Moreover, TRAIL-endostatin-based double-gene-radiotherapy demonstrated better effects on growth inhibition, promotion of apoptosis and induction of cell cycle arrest in ECV304 cells than single-gene-radiotherapy.展开更多
基金supported by Linyi City Science and Technology Development Plan in 2014(No.201413010)
文摘Objective: To study the inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice. Methods: Female mice were selected as experimental animals, and breast cancer tumor-bearing mouse models were established and then divided into group A, B, C and D that respectively received saline, recombinant human endostatin, ginsenosides Rg3 and recombinant human endostatin combined with Rg3 intervention; 7 d, 14 d and 21 d after intervention, tumor tissue volume was measured; 21 d after intervention, mice were killed, tumor tissue was collected, and m RNA contents of angiogenesis molecules, invasion molecules, autophagy marker molecules and autophagy signaling pathway molecules were detected. Results: At 7 d, 14 d and 21 d after intervention, tumor tissue volume of group B, C and D was lower than that of group A, and tumor tissue volume of group D was lower than that of group B and C; m RNA contents of VEGFA, VEGFB, VEGFC, MMP2, MMP9, p62, m TOR, PI3 K, Akt, JNK and Beclin-1 in tumor tissue of group B, C and D were significantly lower than those of group A, and LC3-II/LC3-I was significantly higher than that of group A; m RNA contents of VEGFA, VEGFB, VEGFC, MMP2, MMP9, p62, m TOR, PI3 K, Akt, JNK and Beclin-1 in tumor tissue of group D were significantly lower than those of group B and C, and LC3-II/LC3-I was higher than that of group B and C. Conclusions: Endostar combined with ginsenoside Rg3 has stronger inhibiting effect on breast cancer tumor growth in tumor-bearing mice than single drug, and it can inhibit angiogenesis and cell invasion, and enhance cell autophagy.
文摘Background Gene-radiotherapy, the combination of gene therapy and radiation therapy, is a new paradigm for cancer treatment. To enhance anti-tumor effect of gene-radiotherapy, in this study we construct a radiation-inducible dual-gene co-expression vector pEgr-interferon(IFN)-γ- endostatin and studied the anti-tumor effect of pEgr-IFN-γ-endostatin gene-radiotherapy in mice bearing Lewis lung carcinoma and its mechanism.Methods Gene recombinant technique was used to construct dual-gene co-expression plasmid pEgr-IFN-γ-endostatin, and single-gene expression plasmid pEgr-IFN-γ and pEgr-endostatin. The plasmids packed by liposome were injected locally into the tumors of the mice, and the tumors were irradiated with 5 Gy X-ray 36 hours later. The tumor growth rate at different time and mean survival period of the mice were observed. Cytotoxic activity of splenic cytotoxic T-lymphocyte (CTL), natural killer (NK) cell and tumor necrosis factor (TNF)-α secretion activity of peritoneal macrophages of the mice in various groups were evaluated 15 days after irradiation. The intratumor micro-vessel density was evaluated by immunohistochemical staining 10 days after irradiation.Results The tumor growth rate of the mice in dual-gene-radiotherapy group was significantly lower than those in control group, 5 Gy group and single-gene-radiotherapy group at different time after gene-radiotherapy, and the mean survival period of which was longer. Cytotoxic activity of splenic CTL, NK and TNF-α secretion activity of peritoneal macrophages of the mice in dual-gene-radiotherapy group were significantly higher than those in control group, 5 Gy X-ray irradiation group and pEgr-endostatin gene-radiotherapy group 15 days after irradiation. The intratumor micro-vessel density of the mice in dual-gene-radiotherapy group was significantly lower than those in control group, 5 Gy X-ray irradiation group and pEgr-IFN-γgene-radiotherapy group. Conclusion The anti-tumor effect of dual-gene-radiotherapy was significantly better than that of s
基金supported by Natural Science Fund Project of Liaoning Province.No.:201102050
文摘Objective:To investigate the effects of NF-κB inhibitor pyrrolidine dithiocarbamate hydrochloride(PDTC) on vascular endothelial growth factor(VEGF) and endostatin expression in mice with Lewis lung cance;and its mechanism.Methods:Mice survival rate and anti-tumor effects were observed in different concentrations of NF-κB inhibitor PDTC after the Lewis lung cancer mice model was established.VEGF and endostatin expressions were detected by immunohistochemical assay.Results:Lewis lung cancer was be inhibited by 0.5 mg/kg.1.5 mg/kg and 3.0 mg/kg of NF-κB inhibitor PDTC(P<0.05).Microvessel density(MVD) in 0.5 mg/kg.1.5 mg/kg and 3.0 mg/kg NF-κB inhibitor PDTC groups were significantly lower than the control group(P<0.05).Immunohistochemical assay results showed that VEGF and endostatin expressions in the 0.5 mg/kg.1.5 mg/kg and 3.0 mg/kg NF-κB inhibitor PDTC groups were significantly lower than the control group(P<0.05).Western blot results also showed that NF-κB inhibitor PDTC could inhibit VEGF and endostatin expressions in tumor tissues.Conclusions:NF-κB inhibitor PDTC can inhibit tumor formation and reduce tumor angiogenesis in mice with Lewis lung cancer;and its mechanism maybe associated to VEGF and endostatin down-regulation.
基金supported by agrant from the National Natural Science Foundation of China(No.30570546)
文摘This study examined the effects of TRAIL-endostatin-based gene-radiotherapy on cellu-lar growth, apoptosis and cell cycle progression in human vascular endothelial cells ECV304 in vitro. The expression of TRAIL and endostatin protein in ECV304 cells was detected by ELISA after the transfection of recombinant plasmid pshuttle-Egr1-shTRAIL-shES and X-ray irradiation. Then MTT assay was used for determining the cellular proliferation, and flow cytometry (FCM) plus Annexin V and propidium iodide (PI) double-staining or PI single-staining were employed for the detection of apoptosis and cell cycle progression. The results showed that expression of TRAIL and endostatin protein exhibited a time- and dose-dependent change in ECV304 cells after pshut-tle-Egr1-shTRAIL-shES transfection in conjunction with irradiation. In the TRAIL-endostatin-based single- or double-gene-radiotherapy, the cell viability declined in a time- and dose-dependent manner, the percentage of cells at G2/M phase and apoptotic rate was increased, and the percentage of cells at G0/G1 phase was lowered as compared with those receiving radiotherapy alone. Moreover, TRAIL-endostatin-based double-gene-radiotherapy demonstrated better effects on growth inhibition, promotion of apoptosis and induction of cell cycle arrest in ECV304 cells than single-gene-radiotherapy.